Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Parasitol Res ; 122(12): 2999-3012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874392

RESUMO

Ecological associations between wild felids and parasites from the Taeniidae family are related to predator-prey interactions, where felids act as definitive hosts while their prey, herbivores and/or omnivores, act as intermediate hosts. In the Atlantic Forest, six neotropical felid species coexist in sympatry, but the ecological parasite-host interactions remain poorly studied. Taenia omissa is a tapeworm that parasitizes cougars (Puma concolor) as its only definitive host and their ungulate prey as intermediate hosts. The aim of this study was to identify tapeworms present in road-killed fauna using both molecular and morphological characteristics and their predator-prey relationship. Adult tapeworms found in a cougar, a jaguarundi (Herpailurus yagouaroundi), and two ocelots (Leopardus pardalis); and metacestodes found in a red brocket deer (Mazama americana) and a wild guinea pig (Cavia aperea) were analyzed. Through morphological analysis of rostellar hooks and molecular analysis of the mitochondrial genetic marker cox1, Taenia omissa adult individuals were identified in the cougar, and metacestodes in the red brocket deer, proving the existence of a full host-parasite life cycle in the Atlantic Forest region. This new report reveals the southernmost record of T. omissa and broadens its geographic distribution. In addition, isolates of the Taenia genus divergent from those described so far in molecular databases were reported and suggested a wild cycle that involves the jaguarundi and agouti (Dasyprocta asarae) as definitive and intermediate hosts, respectively. These results highlight the complexity of the tapeworm population in the region and the need to study it with both morphological and molecular approaches.


Assuntos
Cestoides , Cervos , Felidae , Puma , Taenia , Humanos , Animais , Cobaias , Cervos/parasitologia , Cestoides/genética , Florestas
2.
Bioinformatics ; 36(24): 5571-5581, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33244583

RESUMO

MOTIVATION: The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has recently emerged as the responsible for the pandemic outbreak of the coronavirus disease 2019. This virus is closely related to coronaviruses infecting bats and Malayan pangolins, species suspected to be an intermediate host in the passage to humans. Several genomic mutations affecting viral proteins have been identified, contributing to the understanding of the recent animal-to-human transmission. However, the capacity of SARS-CoV-2 to encode functional putative microRNAs (miRNAs) remains largely unexplored. RESULTS: We have used deep learning to discover 12 candidate stem-loop structures hidden in the viral protein-coding genome. Among the precursors, the expression of eight mature miRNAs-like sequences was confirmed in small RNA-seq data from SARS-CoV-2 infected human cells. Predicted miRNAs are likely to target a subset of human genes of which 109 are transcriptionally deregulated upon infection. Remarkably, 28 of those genes potentially targeted by SARS-CoV-2 miRNAs are down-regulated in infected human cells. Interestingly, most of them have been related to respiratory diseases and viral infection, including several afflictions previously associated with SARS-CoV-1 and SARS-CoV-2. The comparison of SARS-CoV-2 pre-miRNA sequences with those from bat and pangolin coronaviruses suggests that single nucleotide mutations could have helped its progenitors jumping inter-species boundaries, allowing the gain of novel mature miRNAs targeting human mRNAs. Our results suggest that the recent acquisition of novel miRNAs-like sequences in the SARS-CoV-2 genome may have contributed to modulate the transcriptional reprograming of the new host upon infection. AVAILABILITY AND IMPLEMENTATION: https://github.com/sinc-lab/sarscov2-mirna-discovery. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Coronavirus , Animais , Betacoronavirus , Coronavirus/genética , Genoma Viral , Humanos , Pandemias , SARS-CoV-2
3.
Parasitol Res ; 121(4): 1077-1089, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34665308

RESUMO

The first cestode genomes were obtained by an international consortium led by the Wellcome Sanger Institute that included representative institutions from countries where the sequenced parasites have been studied for decades, in part because they are etiological agents of endemic diseases (Argentina, Uruguay, Mexico, Canada, UK, Germany, Switzerland, Ireland, USA, Japan, and China). After this, several complete genomes were obtained reaching 16 species to date. Cestode genomes have smaller relative size compared to other animals including free-living flatworms. Moreover, the features genome size and repeat content seem to differ in the two analyzed orders. Cyclophyllidean species have smaller genomes and with fewer repetitive content than Diphyllobothriidean species. On average, cestode genomes have 13,753 genes with 6 exons per gene and 41% GC content. More than 5,000 shared cestode proteins were accurately annotated by the integration of gene predictions and transcriptome evidence being more than 40% of these proteins of unknown function. Several gene losses and reduction of gene families were found and could be related to the extreme parasitic lifestyle of these species. The application of cutting-edge sequencing technology allowed the characterization of the terminal sequences of chromosomes that possess unique characteristics. Here, we review the current status of knowledge of complete cestode genomes and place it within a comparative genomics perspective. Multidisciplinary work together with the implementation of new technologies will provide valuable information that can certainly improve our chances to finally eradicate or at least control diseases caused by cestodes.


Assuntos
Cestoides , Infecções por Cestoides , Platelmintos , Animais , Cestoides/genética , Infecções por Cestoides/veterinária , Genômica , Platelmintos/genética , Análise de Sequência de DNA
4.
J Exp Bot ; 72(7): 2525-2543, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367755

RESUMO

Sucrose metabolism is important for most plants, both as the main source of carbon and via signaling mechanisms that have been proposed for this molecule. A cleaving enzyme, invertase (INV) channels sucrose into sink metabolism. Although acid soluble and insoluble invertases have been largely investigated, studies on the role of neutral invertases (A/N-INV) have lagged behind. Here, we identified a tomato A/N-INV encoding gene (NI6) co-localizing with a previously reported quantitative trait locus (QTL) largely affecting primary carbon metabolism in tomato. Of the eight A/N-INV genes identified in the tomato genome, NI6 mRNA is present in all organs, but its expression was higher in sink tissues (mainly roots and fruits). A NI6-GFP fusion protein localized to the cytosol of mesophyll cells. Tomato NI6-silenced plants showed impaired growth phenotype, delayed flowering and a dramatic reduction in fruit set. Global gene expression and metabolite profile analyses of these plants revealed that NI6 is not only essential for sugar metabolism, but also plays a signaling role in stress adaptation. We also identified major hubs, whose expression patterns were greatly affected by NI6 silencing; these hubs were within the signaling cascade that coordinates carbohydrate metabolism with growth and development in tomato.


Assuntos
Frutas/fisiologia , Solanum lycopersicum , beta-Frutofuranosidase , Citosol , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Sacarose , beta-Frutofuranosidase/genética
5.
Parasitol Res ; 119(4): 1401-1408, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32130486

RESUMO

Fatty acid-binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids de novo, FABPs have been proposed as essential proteins, and thus, as possible drug targets and/or carriers against these parasites. We performed data mining in Echinococcus multilocularis and Echinococcus granulosus genomes in order to test whether this family of proteins is more complex than previously reported. By exploring the genomes of E. multilocularis and E. granulosus, six genes coding for FABPs were found in each organism. In the case of E. granulosus, all of them have different coding sequences, whereas in E. multilocularis, two of the genes code for the same protein. Remarkably, one of the genes (in both cestodes) encodes a FABP with a C-terminal extension unusual for this family of proteins. The newly described genes present variations in their structure in comparison with previously described FABP genes in Echinococcus spp. The coding sequences for E. multilocularis were validated by cloning and sequencing. Moreover, differential expression patterns of FABPs were observed at different stages of the life cycle of E. multilocularis by exploring transcriptomic data from several sources. In summary, FABP family in cestodes is far more complex than previously thought and includes new members that seem to be only present in flatworms.


Assuntos
Echinococcus granulosus/genética , Echinococcus multilocularis/genética , Proteínas de Ligação a Ácido Graxo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA de Protozoário/genética , Ácidos Graxos/metabolismo , Genoma de Protozoário/genética , Análise de Sequência , Análise de Sequência de DNA , Transcriptoma/genética
6.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957566

RESUMO

Several biological activities depend on iron-sulfur clusters ([Fe-S]). Even though they are well-known in several organisms their function and metabolic pathway were poorly understood in the majority of the organisms. We propose to use the amoeba Dictyostelium discoideum, as a biological model to study the biosynthesis of [Fe-S] at the molecular, cellular and organism levels. First, we have explored the D. discoideum genome looking for genes corresponding to the subunits that constitute the molecular machinery for Fe-S cluster assembly and, based on the structure of the mammalian supercomplex and amino acid conservation profiles, we inferred the full functionality of the amoeba machinery. After that, we expressed the recombinant mature form of D. discoideum frataxin protein (DdFXN), the kinetic activator of this pathway. We characterized the protein and its conformational stability. DdFXN is monomeric and compact. The analysis of the secondary structure content, calculated using the far-UV CD spectra, was compatible with the data expected for the FXN fold, and near-UV CD spectra were compatible with the data corresponding to a folded protein. In addition, Tryptophan fluorescence indicated that the emission occurs from an apolar environment. However, the conformation of DdFXN is significantly less stable than that of the human FXN, (4.0 vs. 9.0 kcal mol-1, respectively). Based on a sequence analysis and structural models of DdFXN, we investigated key residues involved in the interaction of DdFXN with the supercomplex and the effect of point mutations on the energetics of the DdFXN tertiary structure. More than 10 residues involved in Friedreich's Ataxia are conserved between the human and DdFXN forms, and a good correlation between mutational effect on the energetics of both proteins were found, suggesting the existence of similar sequence/function/stability relationships. Finally, we integrated this information in an evolutionary context which highlights particular variation patterns between amoeba and humans that may reflect a functional importance of specific protein positions. Moreover, the complete pathway obtained forms a piece of evidence in favor of the hypothesis of a shared and highly conserved [Fe-S] assembly machinery between Human and D. discoideum.


Assuntos
Dictyostelium/metabolismo , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sequência de Aminoácidos/genética , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Biologia Computacional , Cristalografia , Dictyostelium/genética , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Cinética , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Alinhamento de Sequência , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Frataxina
7.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23485966

RESUMO

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Assuntos
Adaptação Fisiológica/genética , Cestoides/genética , Genoma Helmíntico/genética , Parasitos/genética , Animais , Evolução Biológica , Cestoides/efeitos dos fármacos , Cestoides/fisiologia , Infecções por Cestoides/tratamento farmacológico , Infecções por Cestoides/metabolismo , Sequência Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helmintos/genética , Genes Homeobox/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Hymenolepis/genética , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular , Parasitos/efeitos dos fármacos , Parasitos/fisiologia , Proteoma/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Taenia solium/genética
8.
BMC Genomics ; 18(1): 204, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241794

RESUMO

BACKGROUND: The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. RESULTS: We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. CONCLUSIONS: This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high-quality genome assembly is critical for fully exploring the biology of a pathogenic organism. The E. canadensis (G7) genome presented in this study provides a unique opportunity to address the genetic diversity among the genus Echinococcus and its particular developmental features. At present, there is no unequivocal taxonomic classification of Echinococcus species; however, the genome-wide SNPs analysis performed here revealed the phylogenetic distance among these three Echinococcus species. Additional cestode genomes need to be sequenced to be able to resolve their phylogeny.


Assuntos
Equinococose/genética , Echinococcus/genética , Genoma de Protozoário , Animais , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Hibridização Genômica Comparativa , Mapeamento de Sequências Contíguas , Ilhas de CpG , Metilação de DNA , Equinococose/parasitologia , Equinococose/patologia , Echinococcus/classificação , Echinococcus/metabolismo , Humanos , Sequências Repetitivas Dispersas/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
9.
J Exp Bot ; 67(14): 4091-103, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27194734

RESUMO

Improving carbon fixation in order to enhance crop yield is a major goal in plant sciences. By quantitative trait locus (QTL) mapping, it has been demonstrated that a vacuolar invertase (vac-Inv) plays a key role in determining the radical length in Arabidopsis. In this model, variation in vac-Inv activity was detected in a near isogenic line (NIL) population derived from a cross between two divergent accessions: Landsberg erecta (Ler) and Cape Verde Island (CVI), with the CVI allele conferring both higher Inv activity and longer radicles. The aim of the current work is to understand the mechanism(s) underlying this QTL by analyzing structural and functional differences of vac-Inv from both accessions. Relative transcript abundance analyzed by quantitative real-time PCR (qRT-PCR) showed similar expression patterns in both accessions; however, DNA sequence analyses revealed several polymorphisms that lead to changes in the corresponding protein sequence. Moreover, activity assays revealed higher vac-Inv activity in genotypes carrying the CVI allele than in those carrying the Ler allele. Analyses of purified recombinant proteins showed a similar K m for both alleles and a slightly higher V max for that of Ler. Treatment of plant extracts with foaming to release possible interacting Inv inhibitory protein(s) led to a large increase in activity for the Ler allele, but no changes for genotypes carrying the CVI allele. qRT-PCR analyses of two vac-Inv inhibitors in seedlings from parental and NIL genotypes revealed different expression patterns. Taken together, these results demonstrate that the vac-Inv QTL affects root biomass accumulation and also carbon partitioning through a differential regulation of vac-Inv inhibitors at the mRNA level.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , beta-Frutofuranosidase/fisiologia , Alelos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Conformação Proteica , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Vacúolos/enzimologia , Vacúolos/fisiologia , beta-Frutofuranosidase/genética
10.
Trop Med Int Health ; 21(2): 166-75, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610060

RESUMO

OBJECTIVE: To systematically review publications on Echinococcus granulosus sensu lato species/genotypes reported in domestic intermediate and definitive hosts in South America and in human cases worldwide, taking into account those articles where DNA sequencing was performed; and to analyse the density of each type of livestock that can act as intermediate host, and features of medical importance such as cyst organ location. METHODS: Literature search in numerous databases. We included only articles where samples were genotyped by sequencing since to date it is the most accurate method to unambiguously identify all E. granulosus s. l. genotypes. Also, we report new E. granulosus s. l. samples from Argentina and Uruguay analysed by sequencing of cox1 gene. RESULTS: In South America, five countries have cystic echinococcosis cases for which sequencing data are available: Argentina, Brazil, Chile, Peru and Uruguay, adding up 1534 cases. E. granulosus s. s. (G1) accounts for most of the global burden of human and livestock cases. Also, E. canadensis (G6) plays a significant role in human cystic echinococcosis. Likewise, worldwide analysis of human cases showed that 72.9% are caused by E. granulosus s. s. (G1) and 12.2% and 9.6% by E. canadensis G6 and G7, respectively. CONCLUSIONS: E. granulosus s. s. (G1) accounts for most of the global burden followed by E. canadensis (G6 and G7) in South America and worldwide. This information should be taken into account to suit local cystic echinococcosis control and prevention programmes according to each molecular epidemiological situation.


Assuntos
Equinococose/parasitologia , Echinococcus granulosus/genética , Genótipo , Gado/parasitologia , Animais , Equinococose/veterinária , Echinococcus , Humanos , América do Sul
11.
BMC Bioinformatics ; 15: 101, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24717120

RESUMO

BACKGROUND: It is a common practice in bioinformatics to validate each group returned by a clustering algorithm through manual analysis, according to a-priori biological knowledge. This procedure helps finding functionally related patterns to propose hypotheses for their behavior and the biological processes involved. Therefore, this knowledge is used only as a second step, after data are just clustered according to their expression patterns. Thus, it could be very useful to be able to improve the clustering of biological data by incorporating prior knowledge into the cluster formation itself, in order to enhance the biological value of the clusters. RESULTS: A novel training algorithm for clustering is presented, which evaluates the biological internal connections of the data points while the clusters are being formed. Within this training algorithm, the calculation of distances among data points and neurons centroids includes a new term based on information from well-known metabolic pathways. The standard self-organizing map (SOM) training versus the biologically-inspired SOM (bSOM) training were tested with two real data sets of transcripts and metabolites from Solanum lycopersicum and Arabidopsis thaliana species. Classical data mining validation measures were used to evaluate the clustering solutions obtained by both algorithms. Moreover, a new measure that takes into account the biological connectivity of the clusters was applied. The results of bSOM show important improvements in the convergence and performance for the proposed clustering method in comparison to standard SOM training, in particular, from the application point of view. CONCLUSIONS: Analyses of the clusters obtained with bSOM indicate that including biological information during training can certainly increase the biological value of the clusters found with the proposed method. It is worth to highlight that this fact has effectively improved the results, which can simplify their further analysis.The algorithm is available as a web-demo at http://fich.unl.edu.ar/sinc/web-demo/bsom-lite/. The source code and the data sets supporting the results of this article are available at http://sourceforge.net/projects/sourcesinc/files/bsom.


Assuntos
Redes e Vias Metabólicas , Linguagens de Programação , Algoritmos , Arabidopsis/metabolismo , Análise por Conglomerados , Mineração de Dados , Solanum lycopersicum/metabolismo
12.
Vet Parasitol Reg Stud Reports ; 49: 101001, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38462307

RESUMO

Dioctophyme renale (Goeze 1782) has not previously been reported in the pampas fox (Lycalopex gymnocercus) (Fisher 1814), the most abundant canid of southern South America. A wild adult pampas fox female was found dead due to unknown causes in Santa Fe province, Argentina. Post-mortem examination revealed three red worms measuring 10, 11 and 15 cm long, each with an approximate width of 5 mm. All of them were found free in the abdominal cavity. The worms were all male and were identified through morphological examination and molecular analysis as D. renale. No worm was found in the kidneys. This study reports the first case of dioctophymatosis in the pampas fox in Argentina, increasing the range of wild aberrant host species infected by the giant kidney worm in the Neotropical region.


Assuntos
Dioctophymatoidea , Raposas , Animais , Masculino , Feminino , América do Sul , Argentina , Especificidade de Hospedeiro
13.
Biology (Basel) ; 12(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37237528

RESUMO

Alveolar (AE) and cystic (CE) echinococcosis are two parasitic diseases caused by the tapeworms Echinococcus multilocularis and E. granulosus sensu lato (s. l.), respectively. Currently, AE and CE are mainly diagnosed by means of imaging techniques, serology, and clinical and epidemiological data. However, no viability markers that indicate parasite state during infection are available. Extracellular small RNAs (sRNAs) are short non-coding RNAs that can be secreted by cells through association with extracellular vesicles, proteins, or lipoproteins. Circulating sRNAs can show altered expression in pathological states; hence, they are intensively studied as biomarkers for several diseases. Here, we profiled the sRNA transcriptomes of AE and CE patients to identify novel biomarkers to aid in medical decisions when current diagnostic procedures are inconclusive. For this, endogenous and parasitic sRNAs were analyzed by sRNA sequencing in serum from disease negative, positive, and treated patients and patients harboring a non-parasitic lesion. Consequently, 20 differentially expressed sRNAs associated with AE, CE, and/or non-parasitic lesion were identified. Our results represent an in-depth characterization of the effect E. multilocularis and E. granulosus s. l. exert on the extracellular sRNA landscape in human infections and provide a set of novel candidate biomarkers for both AE and CE detection.

14.
Life (Basel) ; 13(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137887

RESUMO

Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.

15.
Am J Biol Anthropol ; 181(4): 597-610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37323114

RESUMO

OBJECTIVES: The objective of this study was to enhance our understanding of the population history in South America, specifically Northwestern Argentina, by analyzing complete ancient mitogenomes of individuals from the Ojo de Agua archeological site (970 BP) in Quebrada del Toro (Salta, Argentina). MATERIALS AND METHODS: We analyzed teeth from four individuals from the site Ojo de Agua (970 ± 60 BP), located in Quebrada del Toro (Andean region of Northwestern Argentina). DNA extracts were converted to double-stranded DNA libraries and indexed using unique dual-indexing primer combinations. DNA libraries were then enriched for the complete mitochondrial genome, pooled at equimolar concentrations, and sequenced on an Illumina® MiSeq™ platform. Reads from high quality libraries were trimmed, merged, and then mapped to the revised Cambridge Reference Sequence. The aDNA damage patterns were assessed and contamination estimated. Finally, variants were called, filtered, and the consensus mitogenome was constructed and used for haplogroup assignment. We also compiled available mitogenome sequences from ancient and present-day populations from the Southcentral Andes and other surrounding regions in Argentina. Maximum Likelihood and Bayesian phylogenetic reconstructions were obtained using the generated dataset. RESULTS: We successfully obtained the complete mitogenome sequence from one individual with an average depth coverage of 102X. We discovered a novel haplotype that was assigned to haplogroup D1. Phylogenetic reconstructions suggests that this haplotype falls within the sister branches of the D1j lineage, forming a well-supported clade. The estimate TMRCA of this clade that includes D1j and its sister branches ranged between 12,535 and 18,669 ya. DISCUSSION: The sequence analyzed in this study represents the first ancient mitogenome from within the valley region in Northwestern Argentina. We found that a representative of a lineage highly associated with D1j was already present approximately 1000 BP in the region. Our results agree with the proposed origin of D1j in other regions north of Patagonia and independent of the Pacific coast fast migratory route, contrary to what was originally hypothesized. This study highlights the lack of information regarding pre-Hispanic genetic diversity and contributes to the knowledge about the peopling process in South America.


OBJETIVOS: El objetivo de este estudio fue contribuir a mejorar la comprensión del poblamiento de Sudamérica, específicamente del Noroeste Argentino, mediante el análisis de mitogenomas antiguos completos de individuos del sitio arqueológico Ojo de Agua (970 AP), Quebrada del Toro (Salta, Argentina). MATERIALES Y MÉTODOS: Se analizaron dientes de cuatro individuos del sitio Ojo de Agua (970 ± 60 AP), ubicado en la Quebrada del Toro (región andina del Noroeste Argentino). A partir de los extractos de ADN se armaron librerías doble cadena y se indexaron utilizando combinaciones únicas de pares de cebadores. Las librerías fueron luego enriquecidas en ADN mitocondrial, llevadas a concentraciones equimolares y secuenciadas en una plataforma Illumina® MiSeq™. Las lecturas de las librerías de alta calidad fueron recortadas, fusionadas y, posteriormente, alineadas con la Secuencia de Referencia de Cambridge revisada. Se evaluaron los patrones de daño del ADNa y se estimó la contaminación. Por último, se identificaron las variantes, se filtraron y se construyó el mitogenoma consenso, que se utilizó para la asignación de haplogrupos. Además, se recopilaron secuencias de mitogenomas disponibles para poblaciones pre-hispánicas y actuales de los Andes Centrosur y otras regiones adyacentes de Argentina. Utilizando el conjunto de datos generado, se obtuvieron reconstrucciones filogenéticas mediante Máxima Verosimilitud y estimación Bayesiana. RESULTADOS: Se obtuvo la secuencia completa del mitogenoma de un individuo con una profundidad media de 102X. Esta secuencia corresponde a un nuevo haplotipo que fue asignado al haplogrupo D1. Las reconstrucciones filogenéticas sugirieron que este haplotipo se encuentra dentro del grupo hermano del linaje D1j, conformando un clado bien soportado. La datación estimada para este clado que contiene a D1j y a todo su grupo hermano fue de entre 12.535 y 18.669 años atrás. DISCUSIÓN: La secuencia analizada en este estudio representa el primer mitogenoma antiguo de la región valliserrana del Noroeste Argentino. Se halló que un representante de un linaje altamente asociado con D1j ya estaba presente hace aproximadamente 1000 años AP en la región. Nuestros resultados concuerdan con un origen de D1j en otras regiones al norte de la Patagonia, e independientemente de la ruta migratoria rápida por la costa del Pacífico, en contraposición a lo planteado inicialmente. Este estudio pone en evidencia la falta de información que se tiene actualmente sobre la diversidad genética en tiempos prehispánicos y contribuye al conocimiento del proceso de poblamiento de Sudamérica.


Assuntos
Genoma Mitocondrial , Humanos , Argentina , Genoma Mitocondrial/genética , Filogenia , Teorema de Bayes , DNA Mitocondrial/genética , América do Sul
16.
Epigenomes ; 6(3)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135316

RESUMO

Subtelomeres (ST) are chromosome regions that separate telomeres from euchromatin and play relevant roles in various biological processes of the cell. While their functions are conserved, ST structure and genetic compositions are unique to each species. This study aims to identify and characterize the subtelomeric regions of the 13 Toxoplasma gondii chromosomes of the Me49 strain. Here, STs were defined at chromosome ends based on poor gene density. The length of STs ranges from 8.1 to 232.4 kbp, with a gene density of 0.049 genes/kbp, lower than the Me49 genome (0.15 kbp). Chromatin organization showed that H3K9me3, H2A.X, and H3.3 are highly enriched near telomeres and the 5' end of silenced genes, decaying in intensity towards euchromatin. H3K4me3 and H2A.Z/H2B.Z are shown to be enriched in the 5' end of the ST genes. Satellite DNA was detected in almost all STs, mainly the sat350 family and a novel satellite named sat240. Beyond the STs, only short dispersed fragments of sat240 and sat350 were found. Within STs, there were 12 functional annotated genes, 59 with unknown functions (Hypothetical proteins), 15 from multigene FamB, and 13 from multigene family FamC. Some genes presented low interstrain synteny associated with the presence of satellite DNA. Orthologues of FamB and FamC were also detected in Neospora caninum and Hammondia hammondi. A re-analysis of previous transcriptomic data indicated that ST gene expression is strongly linked to the adaptation to different situations such as extracellular passage (evolve and resequencing study) and changes in metabolism (lack of acetyl-CoA cofactor). In conclusion, the ST region of the T. gondii chromosomes was defined, the STs genes were determined, and it was possible to associate them with high interstrain plasticity and a role in the adaptability of T. gondii to environmental changes.

17.
Plant Physiol ; 152(4): 1772-86, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20118271

RESUMO

With the aim of determining the genetic basis of metabolic regulation in tomato fruit, we constructed a detailed physical map of genomic regions spanning previously described metabolic quantitative trait loci of a Solanum pennellii introgression line population. Two genomic libraries from S. pennellii were screened with 104 colocated markers from five selected genomic regions, and a total of 614 bacterial artificial chromosome (BAC)/cosmids were identified as seed clones. Integration of sequence data with the genetic and physical maps of Solanum lycopersicum facilitated the anchoring of 374 of these BAC/cosmid clones. The analysis of this information resulted in a genome-wide map of a nondomesticated plant species and covers 10% of the physical distance of the selected regions corresponding to approximately 1% of the wild tomato genome. Comparative analyses revealed that S. pennellii and domesticated tomato genomes can be considered as largely colinear. A total of 1,238,705 bp from both BAC/cosmid ends and nine large insert clones were sequenced, annotated, and functionally categorized. The sequence data allowed the evaluation of the level of polymorphism between the wild and cultivated tomato species. An exhaustive microsynteny analysis allowed us to estimate the divergence date of S. pennellii and S. lycopersicum at 2.7 million years ago. The combined results serve as a reference for comparative studies both at the macrosyntenic and microsyntenic levels. They also provide a valuable tool for fine-mapping of quantitative trait loci in tomato. Furthermore, they will contribute to a deeper understanding of the regulatory factors underpinning metabolism and hence defining crop chemical composition.


Assuntos
Genoma de Planta , Locos de Características Quantitativas , Solanum lycopersicum/genética , Cromossomos Artificiais Bacterianos , Marcadores Genéticos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único
18.
Mol Immunol ; 134: 150-160, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773158

RESUMO

In the last years, cell free or extracellular RNAs (ex-RNAs) have emerged as novel intercellular messengers between animal cells, including pathogens. In infectious diseases, ex-RNAs represent novel players in the host-pathogen and pathogen-pathogen interplays and have been described in parasitic helminths from the three major taxonomic groups: nematodes, trematodes and cestodes. Altogether, it is estimated that approximately 30 percent of the world's population is infected with helminths, which cause debilitating diseases and syndromes. Ex-RNAs are protected from degradation by encapsulation in extracellular vesicles (EV), or association to proteins or lipoproteins, and have been detected in the excretion/secretion products of helminth parasites, with EV as the preferred extracellular compartment under study. EV is the generic term used to describe a heterogenous group of subcellular membrane-bound particles, with varying sizes, biogenesis, density and composition. However, recent data suggests that this is not the only means used by helminth parasites to secrete RNAs since ex-RNAs can also be found in EV-depleted samples. Furthermore, the use of pathogen ex-RNAs as biomarkers promise the advent of new diagnostic tools though this field is still in early stages of exploration. In this review, we summarize current knowledge of vesicular and non-vesicular ex-RNAs secretion in helminth parasites, their potential as biomarkers and the evidence of their role in parasite and host reciprocal communication, together with unanswered questions in the field.


Assuntos
Ácidos Nucleicos Livres , Interações Hospedeiro-Parasita , RNA de Helmintos , Animais , Helmintos , Humanos
19.
Sci Rep ; 11(1): 4108, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602998

RESUMO

In December 2019, rising pneumonia cases caused by a novel ß-coronavirus (SARS-CoV-2) occurred in Wuhan, China, which has rapidly spread worldwide, causing thousands of deaths. The WHO declared the SARS-CoV-2 outbreak as a public health emergency of international concern, since then several scientists are dedicated to its study. It has been observed that many human viruses have codon usage biases that match highly expressed proteins in the tissues they infect and depend on the host cell machinery for the replication and co-evolution. In this work, we analysed 91 molecular features and codon usage patterns for 339 viral genes and 463 human genes that consisted of 677,873 codon positions. Hereby, we selected the highly expressed genes from human lung tissue to perform computational studies that permit to compare their molecular features with those of SARS, SARS-CoV-2 and MERS genes. The integrated analysis of all the features revealed that certain viral genes and overexpressed human genes have similar codon usage patterns. The main pattern was the A/T bias that together with other features could propitiate the viral infection, enhanced by a host dependant specialization of the translation machinery of only some of the overexpressed genes. The envelope protein E, the membrane glycoprotein M and ORF7 could be further benefited. This could be the key for a facilitated translation and viral replication conducting to different comorbidities depending on the genetic variability of population due to the host translation machinery. This is the first codon usage approach that reveals which human genes could be potentially deregulated due to the codon usage similarities between the host and the viral genes when the virus is already inside the human cells of the lung tissues. Our work leaded to the identification of additional highly expressed human genes which are not the usual suspects but might play a role in the viral infection and settle the basis for further research in the field of human genetics associated with new viral infections. To identify the genes that could be deregulated under a viral infection is important to predict the collateral effects and determine which individuals would be more susceptible based on their genetic features and comorbidities associated.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Códon/genética , Uso do Códon , Biologia Computacional/métodos , Coronavirus/genética , Infecções por Coronavirus/metabolismo , Genes Virais , Genoma Viral , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética
20.
PLoS Negl Trop Dis ; 15(3): e0009297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750964

RESUMO

The neglected zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode stage of the tapeworm parasite Echinococcus multilocularis. MicroRNAs (miRNAs) are small non-coding RNAs with a major role in regulating gene expression in key biological processes. We analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro, determined the spatial expression of miR-71 in metacestodes cultured in vitro and predicted miRNA targets. Small cDNA libraries from different samples of E. multilocularis were sequenced. We confirmed the expression of 37 miRNAs in E. multilocularis being some of them absent in the host, such as miR-71. We found a few miRNAs highly expressed in all life cycle stages and conditions analyzed, whereas most miRNAs showed very low expression. The most expressed miRNAs were miR-71, miR-9, let-7, miR-10, miR-4989 and miR-1. The high expression of these miRNAs was conserved in other tapeworms, suggesting essential roles in development, survival, or host-parasite interaction. We found highly regulated miRNAs during the different transitions or cultured conditions analyzed, which might suggest a role in the regulation of developmental timing, host-parasite interaction, and/or in maintaining the unique developmental features of each developmental stage or condition. We determined that miR-71 is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. MiRNA target prediction of the most highly expressed miRNAs and in silico functional analysis suggested conserved and essential roles for these miRNAs in parasite biology. We found relevant targets potentially involved in development, cell growth and death, lifespan regulation, transcription, signal transduction and cell motility. The evolutionary conservation and expression analyses of E. multilocularis miRNAs throughout metacestode development along with the in silico functional analyses of their predicted targets might help to identify selective therapeutic targets for treatment and control of AE.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Animais , Sequência de Bases , Proliferação de Células/genética , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Echinococcus multilocularis/efeitos dos fármacos , Interações Hospedeiro-Parasita/genética , Humanos , MicroRNAs/análise , MicroRNAs/efeitos dos fármacos , Família Multigênica/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA