Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929899

RESUMO

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/fisiologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Restrição Calórica , Células HEK293 , Humanos , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
2.
Nat Rev Mol Cell Biol ; 16(9): 545-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26285678

RESUMO

The mitochondrial calcium uniporter is an evolutionarily conserved calcium channel, and its biophysical properties and relevance to cell death, bioenergetics and signalling have been investigated for decades. However, the genes encoding this channel have only recently been discovered, opening up a new 'molecular era' in the study of its biology. We now know that the uniporter is not a single protein but rather a macromolecular complex consisting of pore-forming and regulatory subunits. We review recent studies that harnessed the power of molecular biology and genetics to characterize the mechanism of action of the uniporter, its evolution and its contribution to physiology and human disease.


Assuntos
Canais de Cálcio/fisiologia , Animais , Canais de Cálcio/química , Sinalização do Cálcio , Retroalimentação Fisiológica , Humanos , Modelos Moleculares
3.
Proc Natl Acad Sci U S A ; 116(9): 3546-3555, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755530

RESUMO

The mitochondrial uniporter is a Ca2+-channel complex resident within the organelle's inner membrane. In mammalian cells the uniporter's activity is regulated by Ca2+ due to concerted action of MICU1 and MICU2, two paralogous, but functionally distinct, EF-hand Ca2+-binding proteins. Here we present the X-ray structure of the apo form of Mus musculus MICU2 at 2.5-Å resolution. The core structure of MICU2 is very similar to that of MICU1. It consists of two lobes, each containing one canonical Ca2+-binding EF-hand (EF1, EF4) and one structural EF-hand (EF2, EF3). Two molecules of MICU2 form a symmetrical dimer stabilized by highly conserved hydrophobic contacts between exposed residues of EF1 of one monomer and EF3 of another. Similar interactions stabilize MICU1 dimers, allowing exchange between homo- and heterodimers. The tight EF1-EF3 interface likely accounts for the structural and functional coupling between the Ca2+-binding sites in MICU1, MICU2, and their complex that leads to the previously reported Ca2+-binding cooperativity and dominant negative effect of mutation of the Ca2+-binding sites in either protein. The N- and C-terminal segments of the two proteins are distinctly different. In MICU2 the C-terminal helix is significantly longer than in MICU1, and it adopts a more rigid structure. MICU2's C-terminal helix is dispensable in vitro for its interaction with MICU1 but required for MICU2's function in cells. We propose that in the MICU1-MICU2 oligomeric complex the C-terminal helices of both proteins form a central semiautonomous assembly which contributes to the gating mechanism of the uniporter.


Assuntos
Canais de Cálcio/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Transporte da Membrana Mitocondrial/química , Conformação Proteica , Animais , Sítios de Ligação , Cálcio/química , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Cristalografia por Raios X , Dimerização , Motivos EF Hand/genética , Células HeLa , Humanos , Camundongos , Mitocôndrias/química , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Estrutura Secundária de Proteína
4.
Proc Natl Acad Sci U S A ; 115(34): E7960-E7969, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082385

RESUMO

The mitochondrial uniporter is a Ca2+-activated Ca2+ channel complex that displays exceptionally high conductance and selectivity. Here, we report cellular metal toxicity screens highlighting the uniporter's role in Mn2+ toxicity. Cells lacking the pore-forming uniporter subunit, MCU, are more resistant to Mn2+ toxicity, while cells lacking the Ca2+-sensing inhibitory subunit, MICU1, are more sensitive than the wild type. Consistent with these findings, Caenorhabditis elegans lacking the uniporter's pore have increased resistance to Mn2+ toxicity. The chemical-genetic interaction between uniporter machinery and Mn2+ toxicity prompted us to hypothesize that Mn2+ can indeed be transported by the uniporter's pore, but this transport is prevented by MICU1. To this end, we demonstrate that, in the absence of MICU1, both Mn2+ and Ca2+ can pass through the uniporter, as evidenced by mitochondrial Mn2+ uptake assays, mitochondrial membrane potential measurements, and mitoplast electrophysiology. We show that Mn2+ does not elicit the conformational change in MICU1 that is physiologically elicited by Ca2+, preventing Mn2+ from inducing the pore opening. Our work showcases a mechanism by which a channel's auxiliary subunit can contribute to its apparent selectivity and, furthermore, may have implications for understanding how manganese contributes to neurodegenerative disease.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Manganês/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/genética , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Células K562 , Proteínas de Transporte da Membrana Mitocondrial/genética
5.
Proc Natl Acad Sci U S A ; 114(43): E9096-E9104, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073106

RESUMO

Comparative analyses of transcriptional profiles from humans and mice with cardiovascular pathologies revealed consistently elevated expression of MICU2, a regulatory subunit of the mitochondrial calcium uniporter complex. To determine if MICU2 expression was cardioprotective, we produced and characterized Micu2-/- mice. Mutant mice had left atrial enlargement and Micu2-/- cardiomyocytes had delayed sarcomere relaxation and cytosolic calcium reuptake kinetics, indicating diastolic dysfunction. RNA sequencing (RNA-seq) of Micu2-/- ventricular tissues revealed markedly reduced transcripts encoding the apelin receptor (Micu2-/- vs. wild type, P = 7.8 × 10-40), which suppresses angiotensin II receptor signaling via allosteric transinhibition. We found that Micu2-/- and wild-type mice had comparable basal blood pressures and elevated responses to angiotensin II infusion, but that Micu2-/- mice exhibited systolic dysfunction and 30% lethality from abdominal aortic rupture. Aneurysms and rupture did not occur with norepinephrine-induced hypertension. Aortic tissue from Micu2-/- mice had increased expression of extracellular matrix remodeling genes, while single-cell RNA-seq analyses showed increased expression of genes related to reactive oxygen species, inflammation, and proliferation in fibroblast and smooth muscle cells. We concluded that Micu2-/- mice recapitulate features of diastolic heart disease and define previously unappreciated roles for Micu2 in regulating angiotensin II-mediated hypertensive responses that are critical in protecting the abdominal aorta from injury.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/genética , Angiotensina Amida/genética , Angiotensina II/farmacologia , Animais , Aorta Abdominal/patologia , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Eletrocardiografia , Regulação da Expressão Gênica , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias Hepáticas/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia
6.
EMBO Rep ; 18(8): 1397-1411, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28615291

RESUMO

The mitochondrial calcium uniporter is a Ca2+-activated Ca2+ channel that is essential for dynamic modulation of mitochondrial function in response to cellular Ca2+ signals. It is regulated by two paralogous EF-hand proteins-MICU1 and MICU2, but the mechanism is unknown. Here, we demonstrate that both MICU1 and MICU2 are stabilized by Ca2+ We reconstitute the MICU1-MICU2 heterodimer and demonstrate that it binds Ca2+ cooperatively with high affinity. We discover that both MICU1 and MICU2 exhibit affinity for the mitochondria-specific lipid cardiolipin. We determine the minimum Ca2+ concentration required for disinhibition of the uniporter in permeabilized cells and report a close match with the Ca2+-binding affinity of MICU1-MICU2. We conclude that cooperative, high-affinity interaction of the MICU1-MICU2 complex with Ca2+ serves as an on-off switch, leading to a tightly controlled channel, capable of responding directly to cytosolic Ca2+ signals.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cardiolipinas/metabolismo , Citosol/metabolismo , Motivos EF Hand/fisiologia , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo
7.
Mol Cell Proteomics ; 16(4): 512-523, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28122942

RESUMO

The majority of mitochondrial proteins are encoded in the nuclear genome, translated in the cytoplasm, and directed to the mitochondria by an N-terminal presequence that is cleaved upon import. Recently, N-proteome catalogs have been generated for mitochondria from yeast and from human U937 cells. Here, we applied the subtiligase method to determine N-termini for 327 proteins in mitochondria isolated from mouse liver and kidney. Comparative analysis between mitochondrial N-termini from mouse, human, and yeast proteins shows that whereas presequences are poorly conserved at the sequence level, other presequence properties are extremely conserved, including a length of ∼20-60 amino acids, a net charge between +3 to +6, and the presence of stabilizing amino acids at the N-terminus of mature proteins that follow the N-end rule from bacteria. As in yeast, ∼80% of mouse presequence cleavage sites match canonical motifs for three mitochondrial peptidases (MPP, Icp55, and Oct1), whereas the remainder do not match any known peptidase motifs. We show that mature mitochondrial proteins often exist with a spectrum of N-termini, consistent with a model of multiple cleavage events by MPP and Icp55. In addition to analysis of canonical targeting presequences, our N-terminal dataset allows the exploration of other cleavage events and provides support for polypeptide cleavage into two distinct enzymes (Hsd17b4), protein cleavages key for signaling (Oma1, Opa1, Htra2, Mavs, and Bcs2l13), and in several cases suggests novel protein isoforms (Scp2, Acadm, Adck3, Hsdl2, Dlst, and Ogdh). We present an integrated catalog of mammalian mitochondrial N-termini that can be used as a community resource to investigate individual proteins, to elucidate mechanisms of mammalian mitochondrial processing, and to allow researchers to engineer tags distally to the presequence cleavage.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Rim/metabolismo , Fígado/metabolismo , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nat Methods ; 12(1): 51-4, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25419960

RESUMO

APEX is an engineered peroxidase that functions as an electron microscopy tag and a promiscuous labeling enzyme for live-cell proteomics. Because limited sensitivity precludes applications requiring low APEX expression, we used yeast-display evolution to improve its catalytic efficiency. APEX2 is far more active in cells, enabling the use of electron microscopy to resolve the submitochondrial localization of calcium uptake regulatory protein MICU1. APEX2 also permits superior enrichment of endogenous mitochondrial and endoplasmic reticulum membrane proteins.


Assuntos
Ascorbato Peroxidases/biossíntese , Microscopia Eletrônica de Transmissão/métodos , Proteômica/métodos , Animais , Ascorbato Peroxidases/genética , Células COS , Proteínas de Ligação ao Cálcio/análise , Proteínas de Transporte de Cátions/análise , Chlorocebus aethiops , Evolução Molecular Direcionada/métodos , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/análise , Saccharomyces cerevisiae/enzimologia
9.
Proc Natl Acad Sci U S A ; 111(24): 8985-90, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889638

RESUMO

The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.


Assuntos
Canais de Cálcio/química , Cálcio/química , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Linhagem Celular , Dictyostelium , Técnicas Genéticas , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
10.
EMBO Rep ; 15(3): 299-307, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24503055

RESUMO

The mitochondrial uniporter is a selective Ca(2+) channel regulated by MICU1, an EF hand-containing protein in the organelle's intermembrane space. MICU1 physically associates with and is co-expressed with a paralog, MICU2. To clarify the function of MICU1 and its relationship to MICU2, we used gene knockout (KO) technology. We report that HEK-293T cells lacking MICU1 or MICU2 lose a normal threshold for Ca(2+) intake, extending the known gating function of MICU1 to MICU2. Expression of MICU1 or MICU2 mutants lacking functional Ca(2+)-binding sites leads to a striking loss of Ca(2+) uptake, suggesting that MICU1/2 disinhibit the channel in response to a threshold rise in [Ca(2+)]. MICU2's activity and physical association with the pore require the presence of MICU1, though the converse is not true. We conclude that MICU1 and MICU2 are nonredundant and together set the [Ca(2+)] threshold for uniporter activity.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Células HEK293 , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação
11.
Biopolymers ; 104(2): 110-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656588

RESUMO

Installing an electrophilic amino-acid residue can engender a peptide or protein with chemoselective reactivity. Such a modification to collagen, which is the most abundant protein in animals, could facilitate the development of new biomaterials. Collagen has an abundance of proline-like residues. Here, we report on the incorporation of an electrophilic proline congener, (2S)-4-ketoproline (Kep), into a collagen-mimetic peptide (CMP). An ab initio conformational analysis of Kep revealed its potential to be accommodated within a collagen triple helix. A synthetic CMP containing a Kep residue was indeed able to form a stable triple helix. Moreover, the condensation of its carbonyl group with aminooxy-biotin did not compromise the conformational stability of the triple helix. These data encourage the use of 4-ketoproline as an electrophilic congener of proline.


Assuntos
Prolina/análogos & derivados , Colágeno/química , Peptídeos/química , Prolina/química , Conformação Proteica
12.
J Org Chem ; 78(5): 2099-103, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23163960

RESUMO

Amide carbonyl groups in proteins can engage in C═O···C═O and C-X···C═O interactions, where X is a halogen. The putative involvement of four poles suggests that these interactions are primarily dipolar. Our survey of crystal structures with a C-X···C═O contact that is short (i.e., within the sum of the X and C van der Waals radii) revealed no preferred C-X···C═O dihedral angle. Moreover, we found that structures with a short X(-)···C═O contact display the signatures of an n→π* interaction. We conclude that intimate interactions with carbonyl groups do not require a dipole.


Assuntos
Amidas/química , Halogênios/química , Hidrocarbonetos Halogenados/química , Proteínas/química , Cristalografia por Raios X , Modelos Moleculares , Carbonilação Proteica , Termodinâmica
13.
Mol Ther Nucleic Acids ; 33: 273-285, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37538053

RESUMO

Biological therapeutic agents are highly targeted and potent but limited in their ability to reach intracellular targets. These limitations often necessitate high therapeutic doses and can be associated with less-than-optimal therapeutic activity. One promising solution for therapeutic agent delivery is use of cell-penetrating peptides. Canonical cell-penetrating peptides, however, are limited by low efficiencies of cellular uptake and endosomal escape, minimal proteolytic stability, and toxicity. To overcome these limitations, we designed a family of proprietary cyclic cell-penetrating peptides that form the core of our endosomal escape vehicle technology capable of delivering therapeutic agent-conjugated cargo intracellularly. We demonstrated the therapeutic potential of this endosomal escape vehicle platform in preclinical models of muscular dystrophy with distinct disease etiology. An endosomal escape vehicle-conjugated, splice-modulating oligonucleotide restored dystrophin protein expression in striated muscles in the mdx mouse, a model for Duchenne muscular dystrophy. Furthermore, another endosomal escape vehicle-conjugated, sterically blocking oligonucleotide led to knockdown of aberrant transcript expression levels in facioscapulohumeral muscular dystrophy patient-derived skeletal muscle cells. These findings suggest a significant therapeutic potential of our endosomal escape vehicle conjugated oligonucleotides for targeted upregulation and downregulation of gene expression in neuromuscular diseases, with possible broader application of this platform for delivery of intracellular biological agents.

14.
Am J Physiol Regul Integr Comp Physiol ; 300(3): R708-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191001

RESUMO

The corticosterone response to acute hypoxia in neonatal rats develops in the 1st wk of life, with a shift from ACTH independence to ACTH dependence. Acute hypoxia also leads to hypothermia, which may be protective. There is little information about the endocrine effects of body temperature maintenance during periods of neonatal hypoxia. We hypothesized that prevention of hypothermia during neonatal hypoxia would augment the adrenocortical stress response. Rat pups separated from their dams were studied at postnatal days 2 and 8 (PD2 and PD8). In one group of pups, body temperature was allowed to spontaneously decrease during a 30-min prehypoxia period. Pups were then exposed to 8% O(2) for 3 h and allowed to become spontaneously hypothermic or externally warmed (via servo-controlled heat) to maintain isothermia. In another group, external warming was used to maintain isothermia during the prehypoxia period, and then hypoxia with or without isothermia was applied. Plasma ACTH and corticosterone and mRNA expression of genes for upstream proteins involved in the steroidogenic pathway were measured. Maintenance of isothermia during the prehypoxia period increased baseline plasma ACTH at both ages. Hypothermic hypoxia caused an increase in plasma corticosterone; this response was augmented by isothermia at PD2, when the response was ACTH-independent, and at PD8, when the response was ACTH-dependent. In PD8 rats, isothermia also augmented the plasma ACTH response to hypoxia. We conclude that maintenance of isothermia augments the adrenocortical response to acute hypoxia in the neonate. Prevention of hypothermia may increase the stress response during neonatal hypoxia, becoming more pronounced with increased age.


Assuntos
Hormônio Adrenocorticotrópico/sangue , Regulação da Temperatura Corporal , Hidrocortisona/sangue , Hipotermia/prevenção & controle , Hipóxia/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Doença Aguda , Fatores Etários , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipotermia/genética , Hipotermia/metabolismo , Hipotermia/fisiopatologia , Hipóxia/genética , Hipóxia/fisiopatologia , Fosfoproteínas/genética , Sistema Hipófise-Suprarrenal/fisiopatologia , RNA Mensageiro/sangue , Ratos , Ratos Sprague-Dawley , Receptor Tipo 2 de Melanocortina/genética , Receptores de LDL/genética , Fatores de Tempo
15.
J Org Chem ; 76(19): 7933-7, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21842865

RESUMO

Stereoelectronic effects modulate molecular structure, reactivity, and conformation. We find that the interaction between the ester and carboxyl moieties of aspirin has a previously unappreciated quantum mechanical character that arises from the delocalization of an electron pair (n) of a donor group into the antibonding orbital (π*) of an acceptor group. This interaction affects the physicochemical attributes of aspirin and could have implications for its pharmacology.


Assuntos
Aspirina/química , Modelos Moleculares , Conformação Molecular , Fenômenos Físicos
17.
Bioorg Med Chem Lett ; 19(14): 3859-62, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19423349

RESUMO

According to a prevailing theory, (2S,4R)-4-hydroxyproline (Hyp) residues stabilize the collagen triple helix via a stereoelectronic effect that preorganizes appropriate backbone torsion angles for triple-helix formation. This theory is consistent with the marked stability that results from replacing the hydroxyl group with the more electron-withdrawing fluoro group, as in (2S,4R)-4-fluoroproline (Flp). Nonetheless, the hyperstability of triple helices containing Flp has been attributed by others to the hydrophobic effect rather than a stereoelectronic effect. We tested this hypothesis by replacing Hyp with 4,4-difluoroproline (Dfp) in collagen-related peptides. Dfp retains the hydrophobicity of Flp, but lacks the ability of Flp to preorganize backbone torsion angles. Unlike Flp, Dfp does not endow triple helices with elevated stability, indicating that the hyperstability conferred by Flp is not due to the hydrophobic effect.


Assuntos
Colágeno/química , Prolina/análogos & derivados , Halogenação , Interações Hidrofóbicas e Hidrofílicas , Hidroxiprolina/química , Prolina/química , Estabilidade Proteica , Estereoisomerismo
18.
Neurol Genet ; 2(2): e59, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27123478

RESUMO

OBJECTIVE: To define the mechanism responsible for fatigue, lethargy, and weakness in 2 cousins who had a normal muscle biopsy. METHODS: Exome sequencing, long-range PCR, and Sanger sequencing to identify the pathogenic mutation. Functional analysis in the patient fibroblasts included oxygen consumption measurements, extracellular acidification studies, Western blotting, and calcium imaging, followed by overexpression of the wild-type protein. RESULTS: Analysis of the exome sequencing depth revealed a homozygous deletion of exon 1 of MICU1 within a 2,755-base pair deletion. No MICU1 protein was detected in patient fibroblasts, which had impaired mitochondrial calcium uptake that was rescued through the overexpression of the wild-type allele. CONCLUSIONS: MICU1 mutations cause fatigue and lethargy in patients with normal mitochondrial enzyme activities in muscle. The fluctuating clinical course is likely mediated through the mitochondrial calcium uniporter, which is regulated by MICU1.

19.
Chem Commun (Camb) ; 49(74): 8166-8, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23928794

RESUMO

Carbonyl-carbonyl (C=O···C'=O') interactions are ubiquitous in both small and large molecular systems. This interaction involves delocalization of a lone pair (n) of a donor oxygen into the antibonding orbital (π*) of an acceptor carbonyl group. Analyses of high-resolution protein structures suggest that these carbonyl-carbonyl interactions prefer to occur in pairs, that is, one donor per acceptor. Here, the reluctance of the acceptor carbonyl group (C'=O') to engage in more than one n→π* electron delocalization is probed using imidazolidine-based model systems with one acceptor carbonyl group and two equivalent donor carbonyl groups. The data indicate that the electrophilicity of the acceptor carbonyl group is reduced when it engages in n→π* electron delocalization. This diminished electrophilicity discourages a second n→π* interaction with the acceptor carbonyl group.


Assuntos
Ésteres/química , Elétrons , Imidazolidinas/química , Modelos Moleculares , Estrutura Molecular , Oxirredução
20.
PLoS One ; 8(2): e55785, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409044

RESUMO

Mitochondrial calcium uptake is present in nearly all vertebrate tissues and is believed to be critical in shaping calcium signaling, regulating ATP synthesis and controlling cell death. Calcium uptake occurs through a channel called the uniporter that resides in the inner mitochondrial membrane. Recently, we used comparative genomics to identify MICU1 and MCU as the key regulatory and putative pore-forming subunits of this channel, respectively. Using bioinformatics, we now report that the human genome encodes two additional paralogs of MICU1, which we call MICU2 and MICU3, each of which likely arose by gene duplication and exhibits distinct patterns of organ expression. We demonstrate that MICU1 and MICU2 are expressed in HeLa and HEK293T cells, and provide multiple lines of biochemical evidence that MCU, MICU1 and MICU2 reside within a complex and cross-stabilize each other's protein expression in a cell-type dependent manner. Using in vivo RNAi technology to silence MICU1, MICU2 or both proteins in mouse liver, we observe an additive impairment in calcium handling without adversely impacting mitochondrial respiration or membrane potential. The results identify MICU2 as a new component of the uniporter complex that may contribute to the tissue-specific regulation of this channel.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Respiração Celular/genética , Células HEK293 , Células HeLa , Humanos , Fígado/metabolismo , Potencial da Membrana Mitocondrial/genética , Camundongos , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Família Multigênica , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Interferência de RNA , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA