RESUMO
Because mammalian cardiomyocytes largely cease to proliferate immediately after birth, the regenerative activity of the heart is limited. To date, much effort has been made to clarify the regulatory mechanism of cardiomyocyte proliferation because the amplification of cardiomyocytes could be a promising strategy for heart regenerative therapy. Recently, it was reported that the inhibition of glycogen synthase kinase (GSK)-3 promotes the proliferation of neonatal rat cardiomyocytes (NRCMs) and human iPS cell-derived cardiomyocytes (hiPSC-CMs). Additionally, Yes-associated protein (YAP) induces cardiomyocyte proliferation. The purpose of this study was to address the importance of YAP activity in cardiomyocyte proliferation induced by GSK-3 inhibitors (GSK-3Is) to develop a novel strategy for cardiomyocyte amplification. Immunofluorescent microscopic analysis using an anti-Ki-67 antibody demonstrated that the treatment of NRCMs with GSK-3Is, such as BIO and CHIR99021, increased the ratio of proliferative cardiomyocytes. YAP was localized in the nuclei of more than 95% of cardiomyocytes, either in the presence or absence of GSK-3Is, indicating that YAP was endogenously activated. GSK-3Is increased the expression of ß-catenin and promoted its translocation into the nucleus without influencing YAP activity. The knockdown of YAP using siRNA or pharmacological inhibition of YAP using verteporfin or CIL56 dramatically reduced GSK-3I-induced cardiomyocyte proliferation without suppressing ß-catenin activation. Interestingly, the inhibition of GSK-3 also induced the proliferation of hiPSC-CMs under sparse culture conditions, where YAP was constitutively activated. In contrast, under dense culture conditions, in which YAP activity was suppressed, the proliferative effects of GSK-3Is on hiPSC-CMs were not detected. Importantly, the activation of YAP by the knockdown of α-catenin restored the proproliferative activity of GSK-3Is. Collectively, YAP activation potentiates the GSK-3I-induced proliferation of cardiomyocytes. The blockade of GSK-3 in combination with YAP activation resulted in remarkable amplification of cardiomyocytes.
Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Proliferação de Células , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Proteínas de Sinalização YAP , beta Catenina/metabolismoRESUMO
The resolution of inflammation is closely linked with tissue repair. Recent studies have revealed that macrophages suppress inflammatory reactions by producing lipid mediators, called specialized proresolving mediators (SPMs); however, the biological significance of SPMs in tissue repair remains to be fully elucidated in the heart. In this study, we focused on maresin-1 (MaR1) and examined the reparative effects of MaR1 in cardiomyocytes. The treatment with MaR1 increased cell size in cultured neonatal rat cardiomyocytes. Since the expression of fetal cardiac genes was unchanged by MaR1, physiological hypertrophy was induced by MaR1. SR3335, an inhibitor of retinoic acid-related orphan receptor α (RORα), mitigated MaR1-induced cardiomyocyte hypertrophy, consistent with the recent report that RORα is one of MaR1 receptors. Importantly, in response to MaR1, cardiomyocytes produced IGF-1 via RORα. Moreover, MaR1 activated phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and wortmannin, a PI3K inhibitor, or triciribine, an Akt inhibitor, abrogated MaR1-induced cardiomyocyte hypertrophy. Finally, the blockade of IGF-1 receptor by NVP-AEW541 inhibited MaR-1-induced cardiomyocyte hypertrophy as well as the activation of PI3K/Akt pathway. These data indicate that MaR1 induces cardiomyocyte hypertrophy through RORα/IGF-1/PI3K/Akt pathway. Considering that MaR1 is a potent resolving factor, MaR1 could be a key mediator that orchestrates the resolution of inflammation with myocardial repair.
Assuntos
Cardiomegalia/genética , Cardiotônicos/farmacologia , Ácidos Docosa-Hexaenoicos/efeitos adversos , Fator de Crescimento Insulin-Like I/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/efeitos dos fármacos , Comunicação Parácrina/genética , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/antagonistas & inibidores , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ribonucleosídeos/farmacologia , Transdução de Sinais , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Wortmanina/farmacologiaRESUMO
Though it is well known that mammalian cardiomyocytes exit cell cycle soon after birth, the mechanisms that regulate proliferation remain to be fully elucidated. Recent studies reported that cardiomyocytes undergo dedifferentiation before proliferation, indicating the importance of dedifferentiation in cardiomyocyte proliferation. Since Runx1 is expressed in dedifferentiated cardiomyocytes, Runx1 is widely used as a dedifferentiation marker of cardiomyocytes; however, little is known about the role of Runx1 in the proliferation of cardiomyocytes. The purpose of this study was to clarify the functional significance of Runx1 in cardiomyocyte proliferation. qRT-PCR analysis and immunoblot analysis demonstrated that Runx1 expression was upregulated in neonatal rat cardiomyocytes when cultured in the presence of FBS. Similarly, STAT3 was activated in the presence of FBS. Interestingly, knockdown of STAT3 significantly decreased Runx1 expression, indicating Runx1 is regulated by STAT3. We next investigated the effect of Runx1 on proliferation. Immunofluorescence microscopic analysis using an anti-Ki-67 antibody revealed that knockdown of Runx1 decreased the ratio of proliferating cardiomyocytes. Conversely, Runx1 overexpression using adenovirus vector induced cardiomyocyte proliferation in the absence of FBS. Finally, RNA-sequencing analysis revealed that Runx1 overexpression induced upregulation of cardiac fetal genes and downregulation of genes associated with fatty acid oxidation. Collectively, Runx1 is regulated by STAT3 and induces cardiomyocyte proliferation by juvenilizing cardiomyocytes.
Assuntos
Mamíferos , Miócitos Cardíacos , Animais , Ratos , Animais Recém-Nascidos , Ciclo Celular , Proliferação de Células , Células Cultivadas , Miócitos Cardíacos/metabolismoRESUMO
Tumor suppressor protein p53 plays crucial roles in the onset of heart failure. p53 activation results in cardiac dysfunction, at least partially by suppressing angiogenesis. Though p53 has been reported to reduce VEGF production by inhibiting hypoxia-inducible factor, the anti-angiogenic property of p53 remains to be fully elucidated in cardiomyocytes. To explore the molecular signals downstream of p53 that regulate vascular function, especially under normoxic conditions, DNA microarray was performed using p53-overexpressing rat neonatal cardiomyocytes. Among genes induced by more than 2-fold, we focused on CXCL10, an anti-angiogenic chemokine. Real-time PCR revealed that p53 upregulated the CXCL10 expression as well as p21, a well-known downstream target of p53. Since p53 is known to be activated by doxorubicin (Doxo), we examined the effects of Doxo on the expression of CXCL10 and found that Doxo enhanced the CXCL10 expression, accompanied by p53 induction. Importantly, Doxo-induced CXCL10 was abrogated by siRNA knockdown of p53, indicating that p53 activation is necessary for Doxo-induced CXCL10. Next, we examined the effect of hypoxic condition on p53-mediated induction of CXCL10. Interestingly, CXCL10 was induced by hypoxia and its induction was potentiated by the overexpression of p53. Finally, the conditioned media from cultured cardiomyocytes expressing p53 decreased the tube formation of endothelial cells compared with control, analyzed by angiogenesis assay. However, the inhibition of CXCR3, the receptor of CXCL10, restored the tube formation. These data indicate that CXCL10 is a novel anti-angiogenic factor downstream of p53 in cardiomyocytes and could contribute to the suppression of vascular function by p53.