Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Nature ; 565(7739): 324-327, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651614

RESUMO

Long γ-ray bursts are associated with energetic, broad-lined, stripped-envelope supernovae1,2 and as such mark the death of massive stars. The scarcity of such events nearby and the brightness of the γ-ray burst afterglow, which dominates the emission in the first few days after the burst, have so far prevented the study of the very early evolution of supernovae associated with γ-ray bursts3. In hydrogen-stripped supernovae that are not associated with γ-ray bursts, an excess of high-velocity (roughly 30,000 kilometres per second) material has been interpreted as a signature of a choked jet, which did not emerge from the progenitor star and instead deposited all of its energy in a thermal cocoon4. Here we report multi-epoch spectroscopic observations of the supernova SN 2017iuk, which is associated with the γ-ray burst GRB 171205A. Our spectra display features at extremely high expansion velocities (around 115,000 kilometres per second) within the first day after the burst5,6. Using spectral synthesis models developed for SN 2017iuk, we show that these features are characterized by chemical abundances that differ from those observed in the ejecta of SN 2017iuk at later times. We further show that the high-velocity features originate from the mildly relativistic hot cocoon that is generated by an ultra-relativistic jet within the γ-ray burst expanding and decelerating into the medium that surrounds the progenitor star7,8. This cocoon rapidly becomes transparent9 and is outshone by the supernova emission, which starts to dominate the emission three days after the burst.

2.
Phys Chem Chem Phys ; 23(41): 23796-23807, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643631

RESUMO

In this work, we examined the effect of the length of alkyl chain attached to the benzene ring on the self-assembling phenomena for a series of phenyl alcohol (PhA) derivatives, from phenylmethanol (benzyl alcohol) to 7-phenyl-1-heptanol, by means of X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, and Broadband Dielectric Spectroscopy (BDS) methods. XRD data in the reciprocal and real spaces showed a gradual increase in the local order with the elongation of the alkyl chain. However, the position and full width at half maximum of the main diffraction peak exhibited a non-systematic behavior. To better understand this fact, PhAs were subjected to FTIR spectroscopic studies. These investigations revealed that the association degree and the activation energy of dissociation increase as the alkyl chain length grows. On the other hand, BDS data showed a non-monotonic variation in the Kirkwood correlation factor with increasing length of the alkyl chain, indicating a competition between interactions of the non-polar and polar parts of the molecules in the studied PhAs. Finally, it was also found that the molar surface entropy for PhAs increases with the number of methylene groups, approaching values reported for alkanes, which indicates suppression of the surface order for PhAs with a long alkyl chain. This variability of the various parameters as a function of the length of the side chain shows that the interplay between soft interactions has a strong impact on the local structure and intra and intermolecular dynamics of the studied PhAs.

3.
Soft Matter ; 15(37): 7429-7437, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31468042

RESUMO

The vitrification process is usually preceded by a significant change (around 6-8 decades) in the viscosity, structural relaxation times, or diffusion that occurs in a relatively small range of temperatures in fragile liquids. Along with this phenomenon, conformations of the molecules vary as well. In fact, this process is studied in bulk polymers and high molecular weight materials deposited in the form of thin films. On the other hand, spatial rearrangement of small glass formers in the supercooled liquid state has not been intensively investigated, so far. Herein, data obtained from measurements carried out using various experimental techniques on supercooled 1,2,3,4,6-penta-O-(trimethylsilyl)-d-glucopyranose (S-GLU) have revealed that rotations of silyl moieties along with the deformation in the saccharide ring are significantly slowed down in the vicinity of the glass transition temperature (Tg). These intramolecular reorganizations affect the structural relaxation time, atomic pair distribution function, integrated intensity, as well as a number of bands and signals observed, respectively, in the Raman and NMR spectra. Data reported herein offer a better understanding of the conformational variation and time scale of this process in the complex and flexible molecules around the Tg.

4.
J Chem Phys ; 148(22): 224505, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907061

RESUMO

In this paper, the molecular dynamics of a series of ester derivatives of ibuprofen (IBU), in which the hydrogen atom from the hydroxyl group was substituted by the methyl, isopropyl, hexyl, and benzyl moieties, has been investigated using Broadband dielectric (BD), Nuclear magnetic resonance (NMR), and Raman spectroscopies. We found that except for benzyl IBU (Ben-IBU), an additional process (slow mode, SM) appears in dielectric spectra in all examined compounds. It is worth noting that this relaxation process was observed for the first time in non-modified IBU (a Debye relaxation). According to suggestions by Affouard and Correia [J. Phys. Chem. B. 114, 11397 (2010)] as well as further studies by Adrjanowicz et al. [J. Chem. Phys. 139, 111103 (2013)] on Met-IBU, it was attributed to synperiplanar-antiperiplanar conformational changes within the molecule. Herein, we have shown that with an increasing molecular weight of the substituent, the relaxation times of the SM become longer and its activation energy significantly increases. Moreover, this new relaxation mode was found to be broader than a simple Debye relaxation in Iso-IBU and Hex-IBU. Additional complementary NMR studies indicated that either there is a significant slowdown of the rotation around the O=C-O-R moiety or this kind of movement is completely suppressed in the case of Ben-IBU. Therefore, the SM is not observed in the dielectric loss spectra of this compound. Finally, we carried out isothermal experiments on the samples which have a different thermal history. Interestingly, it turned out that the relaxation times of the structural processes are slightly shorter with respect to those obtained from temperature dependent measurements. This effect was the most prominent in the case of Hex-IBU, while for Ben-IBU, it was not observed at all. Additional time-dependent measurements revealed the ongoing equilibration manifested by the continuous shift of the structural process, until it finally reached its equilibrium position. Further Raman investigations showed that this effect may be related to the rotational/conformational equilibration of the long hexyl chains. Our results are the first ones demonstrating that the structural process is sensitive to the conformational equilibration occurring in the specific highly viscous systems.

5.
Mol Pharm ; 14(6): 2116-2125, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28489944

RESUMO

In this paper the crystal growth of nifedipine from pure system and from binary mixtures composed of active substance (API) and two acetylated disaccharides, maltose and sucrose (NIF-acMAL, NIF-acSUC, 5:1 weight ratio), was investigated. Optical snapshots supported by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) measurements showed that mainly ß and α forms of nifedipine grow up in all investigated samples. They also revealed that the morphology of growing crystals strongly depends on the presence of modified carbohydrates and temperature conditions. Interestingly, it was found that the activation barrier for the crystal growth of the ß polymorph is not affected by acetylated saccharides while the one estimated for the α form changes significantly from 48.5 kJ/mol (pure API) up to 122 kJ/mol (NIF-acMAL system). Moreover, the relationship between the crystal growth rate and structural relaxation times for pure NIF and solid dispersions were analyzed. It turned out that there is a clear decoupling between the crystal growth rate and structural dynamics in both NIF-acMAL and NIF-acSUC binary mixtures. This is in line with recent reports indicating the decoupling phenomenon to be a universal feature of soft matter in the close vicinity of the glass transition temperature.


Assuntos
Cristalização/métodos , Nifedipino/química , Varredura Diferencial de Calorimetria , Simulação de Dinâmica Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Difração de Raios X
6.
Phys Chem Chem Phys ; 19(31): 20949-20958, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745754

RESUMO

Comprehensive FTIR studies on the progress of mutarotation in d-fructose mixed with maltitol have been carried out over a wide range of temperatures, both above and below the glass transition temperature Tg. In addition to the analysis of single bands, we have developed a completely new approach considering the full spectral range to follow the overall progress of the reaction. We have found that at the calorimetric Tg, there is a clear change in the temperature dependence of constant rates. The activation barrier for mutarotation changes from around 59 kJ mol-1 (the supercooled state) to around 249 kJ mol-1 (the glassy state). This dramatic variation in the activation barrier is consistent with the change in the mechanism of this specific chemical conversion, as theoretically considered by Wlodarczyk et al. [Phys. Chem. Chem. Phys., 2014, 16, 4694-4698]. Alternatively, it can also be connected to the change in the viscosity of the sample. Additionally, we investigated the relationship between constant rates (k) of mutarotation, structural relaxation times (τα), and dc conductivity (σdc) above and below the glass transition temperature. It was found that there was a linear correlation between all these quantities; they scale with various exponents changing at Tg. Our results also indicate that a single activation barrier might not be sufficient to describe the mutarotation process.

7.
Phys Chem Chem Phys ; 18(15): 10585-93, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27035123

RESUMO

The aim of this work is to analyze in detail the effect of small hydrogen bonding (HB) structures and enantiomeric composition on the dynamics of glass-forming liquid ketoprofen. For that purpose dielectric relaxation, rheological and NMR studies were performed. Investigated samples are racemic ketoprofen, a single enantiomer of ketoprofen and a racemic ketoprofen methyl ester with no tendency to form HB dimers. The combination of complementary experimental techniques enables us to show that macroscopic viscosity η and α-relaxation time τα have nearly the same temperature dependencies, whereas the relation between the viscosity (or molecular reorientation) and the translational self-diffusion coefficient violates Stokes-Einstein law already at high temperature. Additionally, based on dielectric relaxation studies performed on increased pressure we were able to identify similarities and key differences in the supercooled liquid dynamics of investigated materials affected by their tendency to form intermolecular hydrogen bonds. This includes the effect of pressure on the glass transition temperature Tg, changes in the fragility parameter m and activation volume ΔV, the role of thermal energy and density fluctuations in governing the viscous liquid dynamics (Ev/Ep ratio). Finally, we have also demonstrated that the dynamic behaviour of a single enantiomer and the racemic mixture of the same compound are very much alike. Nevertheless, some slight differences were observed, particularly in the τα(T) dependencies measured in the vicinity of glass transition both at ambient and elevated pressure.

8.
J Chem Phys ; 144(5): 054503, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26851927

RESUMO

High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the crystallization of fully disordered supercooled van der Waals liquids.


Assuntos
Vidro , Pressão , Estrutura Molecular , Análise Espectral/métodos , Temperatura , Difração de Raios X
9.
Phys Rev Lett ; 115(26): 265702, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26765007

RESUMO

Dielectric relaxation studies for model glass-forming liquids confined to nanoporous alumina matrices were examined together with high-pressure results. For confined liquids which show the deviation from bulk dynamics upon approaching the glass transition (the change from the Vogel-Fulcher-Tammann to the Arrhenius law), we have observed a striking agreement between the temperature dependence of the α-relaxation time in the Arrhenius-like region and the isochoric relaxation times extrapolated from the positive range of pressure to the negative pressure domain. Our finding provides strong evidence that glass-forming liquid confined to native nanopores enters the isochoric conditions once the mobility of the interfacial layer becomes frozen in. This results in the negative pressure effects on cooling. We also demonstrate that differences in the sensitivity of various glass-forming liquids to the "confinement effects" can be rationalized by considering the relative importance of thermal energy and density contributions in controlling the α-relaxation dynamics (the E(v)/E(p) ratio).


Assuntos
Modelos Químicos , Nanoporos , Pressão , Vitrificação
10.
Mol Pharm ; 12(8): 3007-19, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26101945

RESUMO

Molecular dynamics of pure nifedipine and its solid dispersions with modified carbohydrates as well as the crystallization kinetics of active pharmaceutical ingredient (API) above and below the glass transition temperature were studied in detail by means of broadband dielectric spectroscopy (BDS), differential scanning calorimetry (DSC), and X-ray diffraction method. It was found that the activation barrier of crystallization increases in molecular dispersions composed of acetylated disaccharides, whereas it slightly decreases in those consisting of modified monocarbohydrates for the experiments carried out above the glass transition temperature. As shown by molecular dynamics simulations it can be related to the strength, character, and structure of intermolecular interactions between API and saccharides, which vary dependently on the excipient. Long-term physical stability studies showed that, in solid dispersions consisting of acetylated maltose and acetylated sucrose, the crystallization of nifedipine is dramatically slowed down, although it is still observable for a low concentration of excipients. With increasing content of modified carbohydrates, the crystallization of API becomes completely suppressed. This is most likely due to additional barriers relating to the intermolecular interactions and diffusion of nifedipine that must be overcome to trigger the crystallization process.


Assuntos
Carboidratos/química , Cristalização/métodos , Simulação de Dinâmica Molecular , Nifedipino/química , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Excipientes/química , Cinética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Temperatura de Transição , Difração de Raios X
11.
J Chem Phys ; 143(18): 181102, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567636

RESUMO

In this paper, we present results of dielectric and shear-mechanical studies for amine (2-ethyl-1-hexylamine) and thiol (2-ethyl-1-hexanethiol) derivatives of the monohydroxy alcohol, 2-ethyl-1-hexanol. The amine and thiol can form hydrogen bonds weaker in strength than those of the alcohol. The combination of dielectric and shear-mechanical data enables us to reveal the presence of a relaxation mode slower than the α-relaxation. This mode is analogous to the Debye mode seen in monohydroxy alcohols and demonstrates that supramolecular structures are present for systems with lower hydrogen bonding strength. We report some key features accompanying the decrease in the strength of the hydrogen bonding interactions on the relaxation dynamics close to the glass-transition. This includes changes (i) in the amplitude of the Debye and α-relaxations and (ii) the separation between primary and secondary modes.

12.
J Chem Phys ; 142(22): 224507, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071720

RESUMO

Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.


Assuntos
Itraconazol/química , Cetoconazol/química , Transição de Fase , Termodinâmica , Humanos , Itraconazol/uso terapêutico , Cetoconazol/uso terapêutico , Cristais Líquidos/química , Simulação de Dinâmica Molecular , Temperatura de Transição
13.
Int J Sports Med ; 36(14): 1163-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26509387

RESUMO

We examined effects of moderate-intensity endurance training on muscle COX/CS activities and V'O2max in control WT and IL-6(-/-) mice. Animals were exercised for 10 weeks on treadmill for 1 h, 5 days a week at velocity of 6 m·min(-1) which was increased by 0.5 m·min(-1) every 2 weeks up to 8 m·min(-1) . Training triggered an increase of enzyme activities in soleus muscle of WT mice (COX: 480.3±8.9 U·g(-1) in sedentary group vs. 773.3±62.6 U·g(-1) in trained group, P<0.05 and CS: 374.0±6.0 U·g(-1) in sedentary group vs. 534.2±20.5 U·g(-1) in trained group, P<0.01, respectively) whereas no changes were observed in soleus of IL6(-/-) mice. Moreover, in mixed gastrocnemius muscle of trained IL-6(-/-) mice enzyme activities tended to be lower (COX: 410.7±48.4 U·g(-1) for sedentary vs. 277.0±36.5 U·g(-1) for trained group and CS: 343.8±24.6 U·g(-1) for sedentary vs. 251.7±27.1 U·g(-1) for trained group). No changes in V'O2max were observed in WT and IL-6(-/-) mice after training. Concluding, moderate-velocity endurance training-induced increase in COX and CS activities in muscles of WT mice only which suggests that IL-6 regulates training-induced skeletal muscle responses to exercise.


Assuntos
Citrato (si)-Sintase/metabolismo , Citocromos c/metabolismo , Interleucina-6/fisiologia , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal , Resistência Física/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/enzimologia
14.
Mol Pharm ; 11(8): 2935-47, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25011022

RESUMO

Differential scanning calorimetry (DSC), broadband dielectric (BDS), and Fourier transform infrared (FTIR) spectroscopies as well as theoretical computations were applied to investigate inter- and intramolecular interactions between the active pharmaceutical ingredient (API) indomethacin (IMC) and a series of acetylated saccharides. It was found that solid dispersions formed by modified glucose and IMC are the least physically stable of all studied samples. Dielectric measurements showed that this finding is related to neither the global nor local mobility, as the two were fairly similar. On the other hand, combined studies with the use of density functional theory (DFT) and FTIR methods indicated that, in contrast to acetylated glucose, modified disaccharides (maltose and sucrose) interact strongly with indomethacin. As a result, internal H-bonds between IMC molecules become very weak or are eventually broken. Simultaneously, strong H-bonds between the matrix and API are formed. This observation was used to explain the physical stability of the investigated solid dispersions. Finally, solubility measurements revealed that the solubility of IMC can be enhanced by the use of acetylated carbohydrates, although the observed improvement is marginal due to strong interactions.


Assuntos
Indometacina/química , Maltose/química , Sacarose/química , Glicemia/análise , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Trato Gastrointestinal/patologia , Vidro , Humanos , Ligação de Hidrogênio , Indometacina/administração & dosagem , Conformação Molecular , Solubilidade , Espectrofotometria , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
15.
Pharm Res ; 31(10): 2887-903, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24831310

RESUMO

PURPOSE: To demonstrate a very effective and easy way of stabilization of amorphous indomethacin (IMC) by preparing binary mixtures with octaacetylmaltose (acMAL). In order to understand the origin of increased stability of amorphous system inter- and intramolecular interactions between IMC and acMAL were studied. METHODS: The amorphous IMC, acMAL and binary mixtures (IMC-acMAL) with different weight ratios were analyzed by using Dielectric Spectroscopy (DS), Differential Scanning Calorimetry (DSC), Raman Spectroscopy, X-ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Quantitative Structure-Activity Relationship (QSAR). RESULTS: Our studies have revealed that indomethacin mixed with acetylated saccharide forms homogeneous mixture. Interestingly, even a small amount of modified maltose prevents from recrystallization of amorphous indomethacin. FTIR measurements and QSAR calculations have shown that octaacetylmaltose significantly affects the concentration of indomethacin dimers. Moreover, with increasing the amount of acMAL in the amorphous solid dispersion molecular interactions between matrix and API become more dominant than IMC-IMC ones. Structural investigations with the use of X-ray diffraction technique have demonstrated that binary mixture of indomethacin with acMAL does not recrystallize upon storage at room temperature for more than 1.5 year. Finally, it was shown that acMAL can be used to improve solubility of IMC. CONCLUSIONS: Acetylated derivative of maltose might be very effective agent to improve physical stability of amorphous indomethacin as well as to enhance its solubility. Intermolecular interactions between modified carbohydrate and IMC are likely to be responsible for increased stability effect in the glassy state.


Assuntos
Anti-Inflamatórios não Esteroides/química , Excipientes/química , Glucanos/química , Indometacina/química , Varredura Diferencial de Calorimetria , Cristalização , Espectroscopia Dielétrica , Estabilidade de Medicamentos , Simulação de Dinâmica Molecular , Estrutura Molecular , Transição de Fase , Relação Quantitativa Estrutura-Atividade , Solubilidade , Análise Espectral Raman , Propriedades de Superfície
16.
Mol Pharm ; 10(5): 1824-35, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23510208

RESUMO

Recently it was reported that upon mechanical milling of pure furosemide significant chemical degradation occurs (Adrjanowicz et al. Pharm. Res.2011, 28, 3220-3236). In this paper, we present a novel way of chemical stabilization amorphous furosemide against decomposing that occur during mechanical treatment by preparing binary mixtures with acylated saccharides. To get some insight into the mechanism of chemical degradation of furosemide induced by cryomilling, experimental investigations supported by density functional theory (DFT) computations were carried out. This included detailed studies on molecular dynamics and physical properties of cryoground samples. The main thrust of our paper is that we have shown that furosemide cryomilled with acylated saccharides forms chemically and physically stable homogeneous mixtures with only one glass transition temperature, Tg. Finally, solubility measurements have demonstrated that furosemide cryomilled with acylated saccharides (glucose, maltose and sucrose) is much more soluble with respect to the crystalline form of this active pharmaceutical ingredient (API).


Assuntos
Furosemida/química , Acilação , Varredura Diferencial de Calorimetria , Carboidratos/química , Química Farmacêutica , Cristalização , Diuréticos/química , Estabilidade de Medicamentos , Congelamento , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Solubilidade , Difração de Raios X
17.
Mol Pharm ; 10(10): 3934-45, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24010649

RESUMO

This paper presents comprehensive studies on the molecular dynamics of a pharmaceutically important substance, posaconazole. In order to characterize relaxation dynamics in the supercooled liquid and glassy states, dielectric and mechanical spectroscopies were applied. Dielectric data have indicated multiple relaxation processes that appear above and below the glass transition temperature Tg (τα=100 s) of posaconazole. From the curvature of the dielectric log10(τα) versus inverse of temperature dependence, we determine so-called "fragility", being a very popular parameter for classifying the structural dynamics of supercooled liquids and polymers. From the calculations, we get m=150, which means that is one of the most fragile glass-forming liquids. In this paper, the relaxation dynamics of supercooled posaconazole extracted from the dielectric response function was also confronted with shear-mechanical relaxation. Finally, we have also presented a direct comparison of the fragility and the number of dynamically correlated molecules Nc determined from dynamic calorimetry curves and dielectric and mechanical spectroscopies, showing a clear deviation in the picture of glass-transition dynamics generated by calorimetric and spectroscopic techniques.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Simulação de Dinâmica Molecular , Análise Espectral/métodos , Triazóis/química
18.
Phys Chem Chem Phys ; 15(47): 20742-52, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24196752

RESUMO

Comprehensive molecular dynamics studies of vitrified and cryogrounded itraconazole (Itr) were performed at ambient and elevated pressure. DSC measurements yielded besides melting and glass transition observed during heating and cooling of both samples two further endothermic events at around T = 363 K and T = 346 K. The nature of these transitions was investigated using X-ray diffraction, broadband dielectric spectroscopy and Density Functional Theory calculations. The X-ray measurements indicated that extra ordering in itraconazole is likely to occur. Based on calculations and theory derived by Letz et al. the transition observed at T = 363 K was discussed in the context of formation of the nematic mesophase. In fact, additional FTIR measurements revealed that order parameter variation in Itr shows a typical sequence of liquid crystal phases with axially symmetric orientational order; i.e. a nematic phase in the temperature range 361.7 K to 346.5 K and a smectic A phase below 346.5. Moreover, dielectric measurements demonstrated that except for the structural relaxation process, there is also slower mode above the glass transition temperature in both vitrified and cryogrounded samples. We considered the origin of this mode taking into account DFT calculations, rod like shape of itraconazole and distribution of its dipole moment vectors. For the dielectric data collected at elevated pressure, evolution of the steepness index versus pressure was determined. Finally, the pressure coefficient of the glass transition temperature was evaluated to be equal to 190 K GPa(-1).


Assuntos
Itraconazol/química , Simulação de Dinâmica Molecular , Varredura Diferencial de Calorimetria , Cristais Líquidos/química , Transição de Fase , Pressão , Temperatura de Transição
19.
J Chem Phys ; 139(11): 111103, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24070272

RESUMO

In this Communication, we present experimental studies that put new insight into the puzzling nature of the Debye relaxation found in the supercooled liquid state of racemic ibuprofen. The appearance of D-relaxation in the loss spectra of non-hydrogen bonding methylated derivate of ibuprofen has proven that Debye relaxation is related solely with conformational changes of the carboxyl group, termed in this paper as synperiplanar-antiperiplanar. Our studies indicate that the presence of hydrogen bonding capabilities is not here the necessary condition to observe Debye process, however, their occurrence might strongly influence α- and D-relaxations dynamics. Interestingly, the activation energy of the D-process in ibuprofen methyl ester on approaching T(g) was found to be perfectly consistent with that reported for ibuprofen by Affouard and Correia [J. Phys. Chem. B 114, 11397-11402 (2010)] (~39 kJ/mol). Finally, IR measurements suggest that the equilibrium between conformers concentration depends on time and temperature, which might explain why the appearance of D-relaxation in supercooled ibuprofen depends on thermal history of the sample.


Assuntos
Analgésicos não Narcóticos/química , Anti-Inflamatórios não Esteroides/química , Ibuprofeno/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular
20.
Mol Pharm ; 9(6): 1748-63, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22540343

RESUMO

Antibiotics are chemical compounds of extremely important medical role. Their history can be traced back more than one hundred years. Despite the passing time and significant progress made in pharmacy and medicine, treatment of many bacterial infections without antibiotics would be completely impossible. This makes them particularly unique substances and explains the unflagging popularity of antibiotics within the medical community. Herein, using dielectric spectroscopy we have studied the molecular mobility in the supercooled liquid and glassy states of three well-known antibiotic agents: azithromycin, clarithromycin and roxithromycin. Dielectric studies revealed a number of relaxation processes of different molecular origin. Besides the primary α-relaxation, observed above the respective glass transition temperatures of antibiotics, two secondary relaxations in the glassy state were identified. Interestingly, the fragility index as well as activation energies of the secondary processes turned out to be practically the same for all three compounds, indicating probably much the same molecular dynamics. Long-term stability of amorphous antibiotics at room temperature was confirmed by X-ray diffraction technique, and calorimetric studies were performed to evaluate the basic thermodynamic parameters. Finally, we have also checked the experimental solubility advantages given by the amorphous form of the examined antibiotics.


Assuntos
Antibacterianos/química , Azitromicina/química , Claritromicina/química , Espectroscopia Dielétrica/métodos , Simulação de Dinâmica Molecular , Roxitromicina/química , Estabilidade de Medicamentos , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA