Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(37): 13107-13112, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31342613

RESUMO

Conductivity, carrier mobility, and a suitable Gibbs free energy are important criteria that determine the performance of catalysts for a hydrogen evolution reaction (HER). However, it is a challenge to combine these factors into a single compound. Herein, we discover a superior electrocatalyst for a HER in the recently identified Dirac nodal arc semimetal PtSn4 . The determined turnover frequency (TOF) for each active site of PtSn4 is 1.54 H2 s-1 at 100 mV. This sets a benchmark for HER catalysis on Pt-based noble metals and earth-abundant metal catalysts. We make use of the robust surface states of PtSn4 as their electrons can be transferred to the adsorbed hydrogen atoms in the catalytic process more efficiently. In addition, PtSn4 displays excellent chemical and electrochemical stabilities after long-term exposure in air and long-time HER stability tests.

2.
Inorg Chem ; 56(14): 8408-8414, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28677956

RESUMO

We use a layered solution crystal growth method to synthesize high-quality single crystals of two different benzylammonium lead iodide perovskite-like organic/inorganic hybrids. The well-known (C6H5CH2NH3)2PbI4 phase is obtained in the form of bright orange platelets, with a structure comprised of single ⟨100⟩-terminated sheets of corner-sharing PbI6 octahedra separated by bilayers of the organic cations. The presence of water during synthesis leads to formation of a novel minority phase that crystallizes in the form of nearly transparent, light yellow bar-shaped crystals. This phase adopts the monoclinic space group P21/n and incorporates water molecules, with structural formula (C6H5CH2NH3)4Pb5I14·2H2O. The crystal structure consists of ribbons of edge-sharing PbI6 octahedra separated by the organic cations. Density functional theory calculations including spin-orbit coupling show that these edge-sharing PbI6 octahedra cause the band gap to increase with respect to corner-sharing PbI6 octahedra in (C6H5CH2NH3)2PbI4. To gain systematic insight, we model the effect of the connectivity of PbI6 octahedra on the band gap in idealized lead iodide perovskite-derived compounds. We find that increasing the connectivity from corner-, via edge-, to face-sharing causes a significant increase in the band gap. This provides a new mechanism to tailor the optical properties in organic/inorganic hybrid compounds.

3.
Inorg Chem ; 56(1): 33-41, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27626290

RESUMO

High-quality single crystals of perovskite-like (CH3NH3)3Bi2I9 hybrids have been synthesized, using a layered-solution crystal-growth technique. The large dielectric constant is strongly affected by the polar ordering of its constituents. Progressive dipolar ordering of the methylammonium cation upon cooling below 300 K gradually converts the hexagonal structure (space group P63/mmc) into a monoclinic phase (C2/c) at 160 K. A well-pronounced, ferrielectric phase transition at 143 K is governed by in-plane ordering of the bismuth lone pair that breaks inversion symmetry and results in a polar phase (space group P21). The dielectric constant is markedly higher in the C2/c phase above this transition. Here, the bismuth lone pair is disordered in-plane, allowing the polarizability to be substantially enhanced. Density functional theory calculations estimate a large ferroelectric polarization of 7.94 µC/cm2 along the polar axis in the P21 phase. The calculated polarization has almost equal contributions of the methylammonium and Bi3+ lone pair, which are fairly decoupled.

4.
Dalton Trans ; 50(33): 11376-11379, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34397063

RESUMO

Intercalation of lithium and ammonia into the layered semiconductor Bi2Se3 proceeds via a hyperextended (by >60%) ammonia-rich intercalate, to eventually produce a layered compound with lithium amide intercalated between the bismuth selenide layers which offers scope for further chemical manipulation.

5.
Nat Commun ; 11(1): 2344, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393785

RESUMO

Two-dimensional metal halide perovskites of Ruddlesden-Popper type have recently moved into the centre of attention of perovskite research due to their potential for light generation and for stabilisation of their 3D counterparts. It has become widespread in the field to attribute broad luminescence with a large Stokes shift to self-trapped excitons, forming due to strong carrier-phonon interactions in these compounds. Contrarily, by investigating the behaviour of two types of lead-iodide based single crystals, we here highlight the extrinsic origin of their broad band emission. As shown by below-gap excitation, in-gap states in the crystal bulk are responsible for the broad emission. With this insight, we further the understanding of the emission properties of low-dimensional perovskites and question the generality of the attribution of broad band emission in metal halide perovskite and related compounds to self-trapped excitons.

6.
Sci Adv ; 5(8): eaaw9867, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453332

RESUMO

The band inversion in topological phase matters bring exotic physical properties such as the topologically protected surface states (TSS). They strongly influence the surface electronic structures of the materials and could serve as a good platform to gain insight into the surface reactions. Here we synthesized high-quality bulk single crystals of Co3Sn2S2 that naturally hosts the band structure of a topological semimetal. This guarantees the existence of robust TSS from the Co atoms. Co3Sn2S2 crystals expose their Kagome lattice that constructed by Co atoms and have high electrical conductivity. They serves as catalytic centers for oxygen evolution process (OER), making bonding and electron transfer more efficient due to the partially filled orbital. The bulk single crystal exhibits outstanding OER catalytic performance, although the surface area is much smaller than that of Co-based nanostructured catalysts. Our findings emphasize the importance of tailoring TSS for the rational design of high-activity electrocatalysts.

7.
ACS Appl Mater Interfaces ; 10(15): 12878-12885, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29578335

RESUMO

The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C6H5CH2NH3)2PbI4) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5-1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C6H5CH2NH3)2PbI4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices.

8.
ACS Nano ; 10(2): 2852-9, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26836373

RESUMO

This paper describes the fabrication of millimeter-long gold nanowires that bisect the center of microfluidic channels. We fabricated the nanowires by nanoskiving and then suspended them over a trench in a glass structure. The channel was sealed by bonding it to a complementary poly(dimethylsiloxane) structure. The resulting structures place the nanowires in the region of highest flow, as opposed to the walls, where it approaches zero, and expose their entire surface area to fluid. We demonstrate active functionality, by constructing a hot-wire anemometer to measure flow through determining the change in resistance of the nanowire as a function of heat dissipation at low voltage (<5 V). Further, passive functionality is demonstrated by visualizing individual, fluorescently labeled DNA molecules attached to the wires. We measure rates of flow and show that, compared to surface-bound DNA strands, elongation saturates at lower rates of flow and background fluorescence from nonspecific binding is reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA