RESUMO
Agriculture is a leading sector in international initiatives to mitigate climate change and promote sustainability. This article exhaustively examines the removals and emissions of greenhouse gases (GHGs) in the agriculture industry. It also investigates an extensive range of GHG sources, including rice cultivation, enteric fermentation in livestock, and synthetic fertilisers and manure management. This research reveals the complex array of obstacles that are faced in the pursuit of reducing emissions and also investigates novel approaches to tackling them. This encompasses the implementation of monitoring systems powered by artificial intelligence, which have the capacity to fundamentally transform initiatives aimed at reducing emissions. Carbon capture technologies, another area investigated in this study, exhibit potential in further reducing GHGs. Sophisticated technologies, such as precision agriculture and the integration of renewable energy sources, can concurrently mitigate emissions and augment agricultural output. Conservation agriculture and agroforestry, among other sustainable agricultural practices, have the potential to facilitate emission reduction and enhance environmental stewardship. The paper emphasises the significance of financial incentives and policy frameworks that are conducive to the adoption of sustainable technologies and practices. This exhaustive evaluation provides a strategic plan for the agriculture industry to become more environmentally conscious and sustainable. Agriculture can significantly contribute to climate change mitigation and the promotion of a sustainable future by adopting a comprehensive approach that incorporates policy changes, technological advancements, and technological innovations.
Assuntos
Agricultura , Inteligência Artificial , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Agricultura/métodos , Mudança Climática , Desenvolvimento Sustentável/tendências , Monitoramento Ambiental/métodos , Efeito Estufa , Conservação dos Recursos Naturais/métodosRESUMO
Arsenic is the hazardous species and still is the global challenge in water treatment. Apatite soil is highly rich in arsenic species, and its mining presents various environmental issues. In this study, novel magnetic microbeads as adsorbent were developed for the elimination of hazardous arsenic ions from apatite soil's aqueous leachate before discharging into environment. The microbeads were fabricated with metformin polyether sulfone after being doped with zero-valent iron (Met-PES/ZVI). The microbeads were characterized using various techniques, including FTIR, XRD, SEM-EDX, VSM, and zeta potential analysis. The developed adsorbent demonstrated a significant elimination in arsenic in aqueous leachate, achieving 82.39% removal after 30 min of contact time, which further increased to 90% after 180 min of shaking. The kinetic analysis revealed that the pseudo-second-order model best represented the adsorption process. The intra-particle diffusion model indicated that the adsorption occurred in two steps. The Langmuir model (R2 = 0.991), with a maximum adsorption capacity of 188.679 mg g-1, was discovered to be the best fit for the experimental data as compared Freundlich model (R2 = 0.981). According to the thermodynamic outcome (ΔG < -20 kJ/mol), the adsorption process was spontaneous and involved physisorption. These findings demonstrate the potential of magnetic Met-PES/ZVI microbeads as an efficient adsorbent for the removal of arsenic from apatite soil aqueous leachate.
Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Solo , Cinética , Microesferas , Termodinâmica , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Purificação da Água/métodosRESUMO
Nowadays, for soil stabilisation and cleaner production of geo-composites, the possibility of utilizing waste rubber is in vogue. The present paper deals with experimentally investigating the mechanical and micro-structural characteristics of weak Indian clayey soil partially substituted with lime (0-3.5%) and waste rubber tyre powder (0-15%). It was observed that, with increasing lime and rubber powder content, the plasticity index of the soil decreases. The shear strength and compaction testing results reveal that adding lime and rubber tyre powder (RTP) enhances the geotechnical performance of clayey soil up to an optimum dosage value. Also, the tri-axial shear testing was performed to obtain stress-strain curves for all considered soil mixes. For modified clayey soil containing 3% lime and 12.5% rubber powder, the cohesion values and bearing capacities improved phenomenally by 36.1% and 88.6% respectively, when compared to clayey soil. Further for this mix, SEM analysis reveals a compacted microstructure which improves dry-density and California's bearing ratio among all modified mixes. The novel co-relations upon regression analysis are found able to predict plasticity index, dry density, bearing capacity and shear strength with higher confidence levels. Overall, the cost-benefit analysis worked out to obtain the optimum cost of construction of footings and flexible pavement shows cost deductions up to 19% and 39% respectively while utilizing modified clay soil mixes containing 3% lime and 12.5% rubber powder in subgrade, ultimately making production stronger, cheaper and environment friendly.
Assuntos
Compostos de Cálcio , Argila , Óxidos , Borracha , Solo , Compostos de Cálcio/química , Óxidos/química , Borracha/química , Solo/química , Argila/química , Silicatos de Alumínio/químicaRESUMO
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Assuntos
Alimentos , Tecnologia , Agricultura , Celulose , Preparações FarmacêuticasRESUMO
In developing countries like India, an economically viable and ecologically approachable strategy is required to safeguard the drinking water. Excessive fluoride intake through drinking water can lead to dental fluorosis, skeletal fluorosis, or both. The present study has been under with an objective to investigate the feasibility of using cellulose derived from coconut fiber as an adsorbent under varying pH conditions for fluoride elimination from water. The assessment of equilibrium concentration of metal ions using adsorption isotherms is an integral part of the study. This present finding indicates the considerable effect of variation of adsorbent dosages on the fluoride removal efficiency under constant temperature conditions of 25 ± 2 °C with a contact period of 24 h. It is pertinent to mention that maximum adsorption of 88% has been observed with a pH value of 6 with 6 h time duration with fluoride dosage of 50 mg/L. The equilibrium concentration dwindled to 0.4 mg/L at fluoride concentration of 20 mg/L. The Langmuir model designates the adsorption capacity value of 2.15 mg/L with initial fluoride concentration of 0.21 mg/g with R2 value of 0.660. Similarly, the adsorption capacity using Freundlich isotherms is found to be 0.58 L/g and 0.59 L/g with fluoride concentration of 1.84 mg/L and 2.15 mg/L respectively. The results from the present study confirm that coconut fiber possesses appropriate sorption capabilities of fluoride ion but is a pH dependent phenomenon. The outcomes of the study indicate the possible use of cellulose extracted from waste coconut fiber as a low-cost fluoride adsorbent. The present study can be well implemented on real scale systems as it will be beneficial economically as well as environmentally.
Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Fluoretos , Celulose , Cocos , Tratamento com Flúor , Cinética , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , AdsorçãoRESUMO
The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of CâCl bonds and the emergence of SiâO bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.
Assuntos
Compostos de Alúmen , Gases , Esgotos , Gases/química , Óleo de Palmeira , Temperatura , BiomassaRESUMO
This study aims to improve the quality of fuel with high calorific value namely Sfuel - a commercial high-quality refuse-derived fuel (RDF) from hazardous waste via modifying the process design and operating parameters of thermal conversion process. The study analyses key parameters of RDF quality, such as calorific value and heavy metal content, before and after process modifications based on the combination of experimental and simulation using Aspen Plus. In this study, the temperature and pressure of the simulation system are varied from 100 to 700 °C and from 1 to 5 bar, respectively. Findings indicate that there are a total of eleven heavy metals and 179 volatile compounds in the "Sfuels". The quality of the targeted product is greatly improved by the metal evaporation at high temperatures and pressures. However, the calorific value of RDF significantly decreases at 700 °C due to a large amount of the carbon content being evaporated. Although the carbon content at high temperatures is significantly lost, the heat from the vapour stream reactor outlet, which is reused to preheat the nitrogen gas stream supplied to the system, reduces energy consumption while improving the thermal conversion efficiency of the system. Besides, low pressure along with high temperature are not the optimal conditions for quality Sfuels improvement by thermal conversion. Results also indicate that electric heating is more economically efficient than natural gas heating.
Assuntos
Metais Pesados , Metais Pesados/análise , Eliminação de Resíduos/métodos , Simulação por Computador , Resíduos Perigosos/análise , Temperatura AltaRESUMO
The biosynthesis of novel nanoparticles with varied morphologies, which has good implications for their biological capabilities, has attracted increasing attention in the field of nanotechnology. Bioactive compounds present in the extract of fungi, bacteria, plants and algae are responsible for nanoparticle synthesis. In comparison to other biological resources, brown seaweeds can also be useful to convert metal ions to metal nanoparticles because of the presence of richer bioactive chemicals. Carbohydrates, proteins, polysaccharides, vitamins, enzymes, pigments, and secondary metabolites in brown seaweeds act as natural reducing, capping, and stabilizing agents in the nanoparticle's synthesis. There are around 2000 species of seaweed that dominate marine resources, but only a few have been reported for nanoparticle synthesis. The presence of bioactive chemicals in the biosynthesized metal nanoparticles confers biological activity. The biosynthesized metal and non-metal nanoparticles from brown seaweeds possess different biological activities because of their different physiochemical properties. Compared with terrestrial resources, marine resources are not much explored for nanoparticle synthesis. To confirm their morphology, characterization methods are used, such as absorption spectrophotometer, X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This review attempts to include the vital role of brown seaweed in the synthesis of metal and non-metal nanoparticles, as well as the method of synthesis and biological applications such as anticancer, antibacterial, antioxidant, anti-diabetic, and other functions.
Assuntos
Alga Marinha , Alga Marinha/química , Nanopartículas Metálicas/química , Phaeophyceae/química , Nanopartículas/química , Antioxidantes/químicaRESUMO
Biomass is a valuable renewable energy adapted as an alternative to traditional fossil fuels. Apart from fuels, biomass is synthesized into highly valuable products that are used in various forms including biofuels, biochemical, bioproducts, packing material, and find practice in pharmaceutical, cosmetics, and nutraceuticals industries. Particularly, microalgae a third-generation feedstock known for its rich carbon content possesses protein lipids and carbohydrates produces a variety of green products such as bioethanol, biohydrogen, biodiesel, and biomethane, and also fixes carbon emission to a certain amount in the atmosphere. However, microalgae conversion in the presence of a catalyst such as a metal-organic framework (MOF) yields high-quality valuable products. A MOF is a porous crystalline material where the structure and pore size can be controlled making it suitable for catalytic reactions and appropriate conversion paths. This review briefly explains the prevailing status of microalgae as a sustainable biomass and features its components for microalgae biorefinery into valuable products and its application in the food industry. MOF properties, characteristics and various MOF-based conversion technologies for biomass conversion with its application are elaborated. In addition, usage of value products produced from microalgae biorefinery in the food industry and its importance is elucidated. In addition, the challenges in integrating biorefinery processes with food industry operations and their solutions are also presented. © 2024 Society of Chemical Industry.
RESUMO
This study reported the synthesis and assessment of zinc oxide/iron oxide (ZnO/Fe2O3) nanocomposite as photocatalysts for the degradation of a mixture of methylene red and methylene blue dyes. X-ray diffraction analysis confirms that the crystallite of zinc oxide (ZnO) has a hexagonal wurtzite phase and iron oxide (Fe2O3) has a rhombohedral phase. Fourier Transform Infra-Red spectrum confirms the presence of Zn-O vibration stretching at 428, 480 and 543 cm-1 stretching confirming Fe-O bond formation. Scanning Electron Microscope images exhibited a diverse size and shape of the nanocomposites. The ZnO-90%/Fe2O3-10% and ZnO-10%/Fe2O3-90% nanocomposites reveal good photocatalytic activity with reaction rate constants of 1.5 × 10-2 and 0.66 × 10-2; and 1.3 × 10-2 and 0.60 × 10-2 for methylene blue and methyl red dye respectively. The results revealed that the synthesized ZnO/Fe2O3 nanocomposite is the best catalyst for dye degradation and can be used for industrial applications in future.
Assuntos
Corantes , Compostos Férricos , Azul de Metileno , Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Nanocompostos/química , Azul de Metileno/química , Compostos Férricos/química , Catálise , Corantes/química , Difração de Raios X , Microscopia Eletrônica de Varredura , Compostos Azo/química , Poluentes Químicos da Água/química , Fotólise , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Assuntos
Cerâmica , Águas Residuárias , Humanos , Adsorção , Preparações FarmacêuticasRESUMO
In this work, a simple sol-gel approach was used for the preparation of cyanopropyl (CNPr) functionalized silica nanoparticles (SiO2-CNPr) that tetraethoxysilane (TEOS) and cyanopropyltriethoxysilane (CNPrTEOS) used as precursors. This as-prepared SiO2-CNPr nanoparticle sorbent was first characterized using FESEM, EDX, FTIR, TGA, and BET techniques. Then, the SiO2-CNPr nanoparticle was applied as a new SPE sorbent for determining trace levels of OPPs in environmental water samples. To enhance the simultaneous extraction of non-polar or/and polar OPPs and to obtain the most efficient sorbent, several sol-gel synthesis parameters were studied. In addition, the effect of several effective parameters on SPE performance was investigated toward simultaneous extraction of non-polar or/and polar OPPs. Moreover, the figures of merit such as precision, linearity, LOQ, LOD, and recovery were evaluated for the sorbent. Finally, the designed SiO2-CNPr SPE was used to determine OPPs in real water samples, and its extraction performance was compared to commercial cartridges based on cyanopropyl.
Assuntos
Praguicidas , Praguicidas/análise , Dióxido de Silício , Compostos Organofosforados , Extração em Fase Sólida/métodos , ÁguaRESUMO
The presence of chloride ion as an environmental pollutant is having a devastating and irreversible effect on aquatic and terrestrial ecosystems. To ensure safe and clean drinking water, it is vital to remove this substance using non-toxic and eco-friendly methods. This study presents a novel and highly efficient Ag NPs-modified bentonite adsorbent for removing chloride ion, a common environmental pollutant, from drinking water using a facile approach. The surface chemical properties and morphology of the pristine Na-bentonite and Ag NPs-Modified bentonite were characterized by field emission scanning electron microscopy (FESEM) and X-ray spectroscopy (EDX), X-Ray diffraction (XRD), Fourier transform infrared (FTIR), and zeta potential (ζ). To achieve maximum chloride ion removal, the effects of experimental parameters, including adsorbent dosage (1-9 g/L), chloride ion concentration (100-900 mg/L), and reaction time (5-25 h), were examined using the Response Surface Methodology (RSM). The chloride ion removal of 90% was obtained at optimum conditions (adsorbent dosage: 7 g/L, chloride ion concentration: 500 mg/L, and reaction time: 20 h). The adsorption isotherm and kinetics results indicated that the Langmuir isotherm model and pseudo-second-order kinetics were found suitable to chloride ion removal. Additionally, the regeneration and reusability of the Ag NPs-modified bentonite were further studied. In the regeneration and reusability study, the Ag NPs-modified bentonite has shown consistently ≥90% and ≥87% chloride ion removal even up to 2 repeated cycles, separately. Thus, the findings in this study provided convincing evidence for using Ag-NPs modified bentonite as a high-efficiency and promising adsorbent to remove chloride ion from drinking water.
Assuntos
Água Potável , Poluentes Químicos da Água , Bentonita/química , Cloretos , Ecossistema , Termodinâmica , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Hydrogen (H2) is a possible energy transporter and feedstock for energy decarbonization, transportation, and chemical sectors while reducing global warming's consequences. The predominant commercial method for producing H2 today is steam methane reforming (SMR). However, there is still room for development in process intensification, energy optimization, and environmental concerns related to CO2 emissions. Reactors using metallic membranes (MRs) can handle both problems. Compared to traditional reactors, MRs operates at substantially lower pressures and temperatures. As a result, capital and operational costs may be significantly cheaper than traditional reactors. Furthermore, metallic membranes (MMs), particularly Pd and its alloys, naturally permit only H2 permeability, enabling the production of a stream with a purity of up to 99.999%. This review describes several methods for H2 production based on the energy sources utilized. SRM with CO2 capture and storage (CCUS), pyrolysis of methane, and water electrolysis are all investigated as process technologies. A debate based on a color code was also created to classify the purity of H2 generation. Although producing H2 using fossil fuels is presently the least expensive method, green H2 generation has the potential to become an affordable alternative in the future. From 2030 onward, green H2 is anticipated to be less costly than blue hydrogen. Green H2 is more expensive than fossil-based H2 since it uses more energy. Blue H2 has several tempting qualities, but the CCUS technology is pricey, and blue H2 contains carbon. At this time, almost 80-95% of CO2 can be stored and captured by the CCUS technology. Nanomaterials are becoming more significant in solving problems with H2 generation and storage. Sustainable nanoparticles, such as photocatalysts and bio-derived particles, have been emphasized for H2 synthesis. New directions in H2 synthesis and nanomaterials for H2 storage have also been discussed. Further, an overview of the H2 value chain is provided at the end, emphasizing the financial implications and outlook for 2050, i.e., carbon-free H2 and zero-emission H2.
Assuntos
Dióxido de Carbono , Hidrogênio , Água , Vapor , MetanoRESUMO
Due to their widespread occurrence and detrimental effects on human health and the environment, endocrine-disrupting hazardous chemicals (EDHCs) have become a significant concern. Therefore, numerous physicochemical and biological remediation techniques have been developed to eliminate EDHCs from various environmental matrices. This review paper aims to provide a comprehensive overview of the state-of-the-art remediation techniques for eliminating EDHCs. The physicochemical methods include adsorption, membrane filtration, photocatalysis, and advanced oxidation processes. The biological methods include biodegradation, phytoremediation, and microbial fuel cells. Each technique's effectiveness, advantages, limitations, and factors affecting their performance are discussed. The review also highlights recent developments and future perspectives in EDHCs remediation. This review provides valuable insights into selecting and optimizing remediation techniques for EDHCs in different environmental matrices.
Assuntos
Disruptores Endócrinos , Recuperação e Remediação Ambiental , Humanos , Biodegradação Ambiental , Substâncias Perigosas/toxicidadeRESUMO
Semiconductor metal oxide with TiO2 nanoparticles removes hazardous compounds from environmental samples. TiO2 nanoparticles have shown potential as an efficient photocatalyst by being employed as a nano-catalyst for the breakdown of organic contaminants in wastewater samples. To separate substances from contaminated samples, combined UV and visible light irradiation has been used. Sol-gel synthesis was used to produce a copper chromite-titanium nanocomposite, which was then evaluated using analytical methods, such as XRD, BET, DRS-UV, and FT-IR. Using visible light, the photocatalytic activity of a nanocomposite made of CuCr2O4 and TiO2 was investigated for its role in the breakdown of malachite green. The effects of several parameters, including pH change, anions presence, contact time, catalyst amount, concentration variation, and the kinetics of photocatalytic degradation were investigated. The magnitude of transition energy calculated using UV-DRS spectra was found to be 3.1 eV for CuCr2O4-TiO2 nanocomposite. Maximum degradation was observed at pH 7.0. The surface area and pore volume of the co-doped samples of Cr2O4 - TiO2 obtained from BET were found to be 6.1213 m2/g and 0.045063 cm3/g respectively. The average particle size of the catalyst of the nano-catalysts calculated from XRD was found to be 8 nm for TiO2 and 66 nm for TiO2-CuCrO4. The peaks obtained in FTIR between the range of 900-500 cm-1 were due to the presence of an aromatic compound. The binding mechanism of a dye molecule to the surface of CuCr2O4-TiO2 nanocomposite was analysed using quantum chemical calculations with the self-consistent reaction field technique employing integral equation formalism for the polarized continuum method and the UFF atomic radii set.
Assuntos
Nanocompostos , Nanopartículas , Titânio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Luz , Água , Nanocompostos/química , Corantes/química , CatáliseRESUMO
An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
Assuntos
Líquidos Iônicos , Humanos , Solventes , Água , Naproxeno , Cátions , ÂnionsRESUMO
Intoxication with methanol most commonly occurs as a consequence of ingesting, inhaling, or coming into contact with formulations that include methanol as a base. Clinical manifestations of methanol poisoning include suppression of the central nervous system, gastrointestinal symptoms, and decompensated metabolic acidosis, which is associated with impaired vision and either early or late blindness within 0.5-4 h after ingestion. After ingestion, methanol concentrations in the blood that are greater than 50 mg/dl should raise some concern. Ingested methanol is typically digested by alcohol dehydrogenase (ADH), and it is subsequently redistributed to the body's water to attain a volume distribution that is about equivalent to 0.77 L/kg. Moreover, it is removed from the body as its natural, unchanged parent molecules. Due to the fact that methanol poisoning is relatively uncommon but frequently involves a large number of victims at the same time, this type of incident occupies a special position in the field of clinical toxicology. The beginning of the COVID-19 pandemic has resulted in an increase in erroneous assumptions regarding the preventative capability of methanol in comparison to viral infection. More than 1000 Iranians fell ill, and more than 300 of them passed away in March of this year after they consumed methanol in the expectation that it would protect them from a new coronavirus. The Atlanta epidemic, which involved 323 individuals and resulted in the deaths of 41, is one example of mass poisoning. Another example is the Kristiansand outbreak, which involved 70 people and resulted in the deaths of three. In 2003, the AAPCC received reports of more than one thousand pediatric exposures. Since methanol poisoning is associated with high mortality rates, it is vital that the condition be addressed seriously and managed as quickly as feasible. The objective of this review was to raise awareness about the mechanism and metabolism of methanol toxicity, the introduction of therapeutic interventions such as gastrointestinal decontamination and methanol metabolism inhibition, the correction of metabolic disturbances, and the establishment of novel diagnostic/screening nanoparticle-based strategies for methanol poisoning such as the discovery of ADH inhibitors as well as the detection of the adulteration of alcoholic drinks by nanoparticles in order to prevent methanol poisoning. In conclusion, increasing warnings and knowledge about clinical manifestations, medical interventions, and novel strategies for methanol poisoning probably results in a decrease in the death load.
Assuntos
COVID-19 , Intoxicação , Humanos , Criança , Metanol/metabolismo , Metanol/toxicidade , Pandemias , Irã (Geográfico) , Intoxicação/terapiaRESUMO
Hyperglycemia, a distinguishing feature of diabetes mellitus that might cause a diabetic foot ulcer (DFU), is an endocrine disorder that affects an extremely high percentage of people. Having a comprehensive understanding of the molecular mechanisms underlying the pathophysiology of diabetic wound healing can help researchers and developers design effective therapeutic strategies to treat the wound healing process in diabetes patients. Using nanoscaffolds and nanotherapeutics with dimensions ranging from 1 to 100 nm represents a state-of-the-art and viable therapeutic strategy for accelerating the wound healing process in diabetic patients, particularly those with DFU. Nanoparticles can interact with biological constituents and infiltrate wound sites owing to their reduced diameter and enhanced surface area. Furthermore, it is noteworthy that they promote the processes of vascularization, cellular proliferation, cell signaling, cell-to-cell interactions, and the formation of biomolecules that are essential for effective wound healing. Nanomaterials possess the ability to effectively transport and deliver various pharmacological agents, such as nucleic acids, growth factors, antioxidants, and antibiotics, to specific tissues, where they can be continuously released and affect the wound healing process in DFU. The present article elucidates the ongoing endeavors in the field of nanoparticle-mediated therapies for the management of DFU.
Assuntos
Diabetes Mellitus , Pé Diabético , Nanopartículas , Humanos , Pé Diabético/tratamento farmacológico , Cicatrização , Peptídeos e Proteínas de Sinalização Intercelular , Nanopartículas/uso terapêutico , Nanotecnologia , Diabetes Mellitus/tratamento farmacológicoRESUMO
An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.