Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 208(0): 287-306, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29796547

RESUMO

Functionalization of metal-organic frameworks with metal nanoparticles (NPs) is a promising way for producing advanced materials for catalytic applications. We present the synthesis and in situ characterization of palladium NPs encapsulated inside a functionalized UiO-67 metal-organic framework. The initial structure was synthesized with 10% of PdCl2bpydc moieties with grafted Pd ions replacing standard 4,4'-biphenyldicarboxylate linkers. This material exhibits the same high crystallinity and thermal stability of standard UiO-67. Formation of palladium NPs was initiated by sample activation in hydrogen and monitored by in situ X-ray powder diffraction and X-ray absorption spectroscopy (XAS). The reduction of PdII ions to Pd0 occurs above 200 °C in 6% H2/He flow. The formed palladium NPs have an average size of 2.1 nm as limited by the cavities of UiO-67 structure. The resulting material showed high activity towards ethylene hydrogenation. Under reaction conditions, palladium was found to form a carbide structure indicated by operando XAS, while formation of ethane was monitored by mass spectroscopy and infra-red spectroscopy.

2.
Nanomaterials (Basel) ; 10(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825750

RESUMO

Adsorption of ethylene on palladium, a key step in various catalytic reactions, may result in a variety of surface-adsorbed species and formation of palladium carbides, especially under industrially relevant pressures and temperatures. Therefore, the application of both surface and bulk sensitive techniques under reaction conditions is important for a comprehensive understanding of ethylene interaction with Pd-catalyst. In this work, we apply in situ X-ray absorption spectroscopy, X-ray diffraction and infrared spectroscopy to follow the evolution of the bulk and surface structure of an industrial catalysts consisting of 2.6 nm supported palladium nanoparticles upon exposure to ethylene under atmospheric pressure at 50 °C. Experimental results were complemented by ab initio simulations of atomic structure, X-ray absorption spectra and vibrational spectra. The adsorbed ethylene was shown to dehydrogenate to C2H3, C2H2 and C2H species, and to finally decompose to palladium carbide. Thus, this study reveals the evolution pathway of ethylene on industrial Pd-catalyst under atmospheric pressure at moderate temperatures, and provides a conceptual framework for the experimental and theoretical investigation of palladium-based systems, in which both surface and bulk structures exhibit a dynamic nature under reaction conditions.

3.
Data Brief ; 25: 104280, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31384654

RESUMO

We report a series of Pd K-edge and Pt L 3-edge X-ray absorption spectra (XAS) collected in situ during thermal treatment of functionalized UiO-67-Pd and UiO-67-Pt metal-organic frameworks in inert and reducing atmospheres. We present raw synchrotron data from three subsequent experiments at different beamlines, normalized XAS spectra and k 2-weighted oscillatory χ(k) functions extracted from one of the datasets. Pd K-edge spectra were collected for the samples in 5% H2/He, 3% H2/He and pure He in the temperature range from room temperature (RT) to 450 °C. Pt L 3-edge were collected for the samples in 3% H2/He, 10% H2/He and pure He in the temperature range from RT to 300 °C. All spectra are reported together with the used atmosphere and temperature. For the analysis of all reported datasets, please see "Evolution of Pt and Pd species in functionalized UiO-67 metal-organic frameworks". Fourier-analysis of Pd K-edge is reported in "Formation and growth of Pd nanoparticles in UiO-67 MOF by in situ EXAFS".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA