Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Phys Chem Chem Phys ; 26(17): 12947-12956, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630436

RESUMO

The scarcity of superhard materials with magnetism or a narrow band gap, despite their potential applications in various fields, makes it desirable to design such materials. Here, a series of C1+xN1-x compounds are theoretically designed by replacing different numbers of nitrogen atoms with carbon atoms in the synthesized C1N1 compound. The results indicate that the compounds C5N3 and C7N1 possess both superhardness and antiferromagnetic ordering due to the introduction of low-coordinated carbon atoms. The hardness of the two compounds is about 40.3 and 54.5 GPa, respectively. The magnetism in both compounds is attributed to the unpaired electrons in low-coordinated carbon atoms, and the magnetic moments are 0.42 and 0.39 µB, respectively. Interestingly, the magnetism in C5N3 remains unaffected by the external pressure used in this study, whereas C7N1 becomes nonmagnetic when the pressure exceeds ∼80 GPa. Electronic calculations reveal that both compounds behave as indirect band gap semiconductors, with narrow energy gaps of about 0.30 and 0.20 eV, respectively. Additionally, the other two compounds, C6N2-I and C6N2-III, exhibit nonmagnetic ordering and possess hardness values of 52.6 and 35.0 GPa, respectively. C6N2-I behaves as a semiconductor with an energy gap of 0.79 eV, and C6N2-III shows metallic behavior. Notably, the energy gaps of C5N3 and C6N2-I remain nearly constant under arbitrary pressure due to their porous and superhard structure. These compounds fill the gap in magnetic or narrow band gap superhard materials, and they can be used in the spintronic or optoelectronic fields where conventional superhard materials are not suitable.

2.
Phys Chem Chem Phys ; 26(29): 19685-19695, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38990516

RESUMO

Pure carbon materials with magnetic properties have attracted considerable research interest due to their advantages over traditional magnetic materials. Nevertheless, such materials are exceedingly rare. Disrupting the Kekulé valence structures in carbon materials potentially leads to the emergence of magnetism. In this study, using first principles calculations, we developed a range of pure carbon allotropes derived from the smallest fullerene C20 which potentially disrupts the Kekulé valence structures after polymerization. The results indicate that some of the allotropes disrupting the Kekulé valence structures exhibit intrinsic antiferromagnetic ordering, and the magnetism originates from the presence of isolated three-fold coordinated C atoms. The other allotropes adhering to the Kekulé valence structures show non-magnetism with all three-fold coordinated C atoms forming dimers. In all magnetic polymers, magnetism arises from unpaired electrons on the isolated three-fold coordinated carbon atoms, with magnetic moments of about 0.40µB at these sites. The adsorption of dopant atoms can significantly alter the magnetic properties of polymers, for instance, the C20-71 polymer with Immm symmetry undergoes a transition from non-magnetic to anti-magnetic ordering upon adsorption of hydrogen atoms. Electronic calculations indicate that these polymers display a range of electronic properties, encompassing both metallic and semiconducting characteristics. Notably, certain magnetic phases exhibit superhard properties, with the hardness value exceeding 40 GPa. This study presents a potential method for designing magnetic carbon materials. Specifically, certain compounds address the gap in magnetic superhard materials composed of light elements, and can be utilized in the field of spintronics where traditional superhard materials are unsuitable.

3.
Chemistry ; 29(40): e202300658, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37195897

RESUMO

The overall photocatalytic CO2 reduction reaction (PCRR), which uses solar energy to convert CO2 and H2 O into chemical feedstocks or fuels without sacrificial reagents, plays a momentous role in CO2 utilization and solar energy conversion. However, significant challenges remain in achieving efficient conversion. Researchers have explored various strategies to realize the overall PCRR efficiently. In this Review, we first explain the criteria for evaluating the overall PCRR and then summarize the following strategies developed over the past decade to promote it: self-driving material development, Z-scheme heterojunction construction, cocatalyst loading, heteroatom doping, surface vacancy creation, and carrier-material matching. Finally, we discuss essential future research directions in the field. Through this comprehensive Review, we aim to provide strategic guidance for the development of efficient overall PCRR systems.

4.
Chemistry ; 29(8): e202202992, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36349874

RESUMO

Exploring highly active and robust self-supporting air electrodes is the key for flexible Zn-air batteries (FZABs). Therefore, we report a novel 3D structural bimetal-based self-supporting electrode consisting of hybrid Cu, Co nanoparticles co-modified nitrogen-doped carbon nanosheets on carbon cloth (Cu, Co NPs@NCNSs/CC), which displays excellent electrochemical activity and durability of the oxygen reduction/evolution reaction (ORR/OER). The Cu, Co NPs@NCNSs/CC exhibits a half-wave potential of 0.863 V toward ORR and an overpotential of 225 mV at 10 mA cm-2 toward OER, owing to its exposed bimetallic sites accelerating the kinetic reaction. In addition, the density functional theory calculation proves that the synergistic effect of CuCo sites favors ORR and OER. Hence, the FZABs based on Cu, Co NPs@NCNSs/CC achieve a larger open-circuit potential (1.45 V), higher energy density (130.10 mW cm-2 ), and outstanding cycling stability. All remarkable results demonstrate valuable enlightenment for seeking advanced energy materials of portable and wearable electronics.

5.
Phys Chem Chem Phys ; 25(12): 8631-8640, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36891910

RESUMO

Piezoelectric materials have been reported to possess catalytic activity under mechanical excitation, such as by ultrasonic waves or collisions. Energy band theory (EBT) is often used to explain the piezocatalytic phenomenon caused by the strain-induced charge separation, but the correlation between the piezoelectric polarization and catalytic activity has still not been fully understood in early theoretical studies with the EBT model. To reveal the intrinsic connection between the piezoelectric feature and surface catalytic activity, in this work, we employ first-principles Density Functional Theory (DFT) to investigate the prototype piezocatalyst BaTiO3 (001) surface (BTO). Our simulation shows that the thickness of BTO has a significant impact on the band structure, polarization charge distribution and the surface work function of both positively and negatively polarized sides. As the driving force of piezocatalysis, the electrostatic potential difference (piezopotential) of the two sides shows strong a correlation with the band structure change under the applied strain, which determines the theoretical catalytic activity of BaTiO3 (001) for water splitting. Finally, we reveal the piezoelectric effects on the surface adsorption energy of H and OH species, which provide a new insight into the mechanism of piezocatalysis. Our work provides a new and in-depth physical insight into the fundamental mechanism of piezocatalysis, which may have important implications for the application of piezocatalysts in water treatment and renewable energy technologies.

6.
Phys Chem Chem Phys ; 25(32): 21408-21415, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530583

RESUMO

Enriching the electronic properties of superhard materials is very important to extend their applications, and some superhard materials with metallic or superconducting characteristics have been designed via theoretical or experimental methods. However, their magnetic features have scarcely been studied, since most of them are limited to nonmagnetic ordering. Here, with the help of first-principles calculations, a series of C4N3 compounds are designed by stacking C4N3 sheets with different sequences. As expected, some of them exhibit both magnetic and superhard characteristics. Notably, all these compounds exhibit dynamic and mechanical stabilities, indicating that their dynamic and mechanical stabilities are independent of the stacking sequence. Among them, the ABC-stacked one is energetically favorable, and it exhibits antiferromagnetic ordering and has a hardness of ∼54.0 GPa, and the electronic calculations show that it is a semiconductor with a direct band gap of ∼1.20 eV. Besides, the magnetism of all magnetic C4N3 compounds is caused by the lower coordinated atoms, and the magnetic moments are located on three-fold C or two-fold coordinated N atoms. Additionally, the magnetic property is deeply dependent on the external pressure. This work opens a potential way to design magnetic superhard materials and can arouse their applications in the spintronic field.

7.
Phys Chem Chem Phys ; 25(20): 13913-13922, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184027

RESUMO

Electrocatalysts for the oxygen reduction reaction (ORR) are extremely crucial for advanced energy conversion technologies, such as fuel cell batteries. A promising ORR catalyst usually should have low overpotentials, rich catalytic sites and low cost. In the past decade, single-atom catalyst (SAC) TM-N4 (TM = Fe, Co, etc.) embedded graphene matrixes have been widely studied for their promising performance and low cost for ORR catalysis, but the effect of coordination on the ORR activity is not fully understood. In this work, we will employ density functional theory (DFT) calculations to systematically investigate the ORR activity of 40 different 3d transition metal single-atom catalysts (SACs) supported on nitrogen-doped graphene supports, ranging from vanadium to zinc. Five different nitrogen coordination configurations (TM-NxC4-x with x = 0, 1, 2, 3, and 4) were studied to reveal how C/N substitution affects the ORR activity. By looking at the stability, free energy diagram, overpotential, and scaling relationship, our calculation showed that partial C substitution can effectively improve the ORR performance of Mn, Co, Ni, and Zn-based SACs. The volcano plot obtained from the scaling relationship indicated that the substitution of N by C could distinctively affect the potential-limiting step in the ORR, which leads to the enhanced or weakened ORR performance. Density of states and d-band center analysis suggested that this coordination-tuned ORR activity can be explained by the shift of the d-band center due to the coordination effect. Finally, four candidates with optimal ORR activity and dynamic stability were proposed from the pool: NiC4, CoNC3, CrN4, and ZnN3C. Our work provides a feasible designing strategy to improve the ORR activity of graphene-based TM-N4 SACs by tuning the coordination environment, which may have potential implication in the high-performance fuel cell development.

8.
Phys Chem Chem Phys ; 25(46): 31628-31635, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37982294

RESUMO

Two-dimensional (2D) layered transition metal dichalcogenides such as MoS2 have been viewed as the most favorable candidates for replacing noble metals in catalyzing the hydrogen evolution reaction in water splitting owing to their earth abundance, superb chemical stability, and appropriate Gibbs free energy. However, due to its low number of catalytic sites and basal catalytic inertia, the pristine MoS2 displayed intrinsically unsatisfactory HER catalytic activity. Here, the hydrogen evolution catalytic activities of nanostructured MoS2 powder before and after plasma modification with nitrogen doping were experimentally compared, and the influence of treatment parameters on the hydrogen evolution catalytic performance of MoS2 has been studied. The feasibility of regulating hydrogen evolution catalytic activity by nitrogen doping of MoS2 was verified based on density functional theory calculations. Our work demonstrates a more convenient and faster way to develop cheap and efficient MoS2-based catalysts for electrochemical hydrogen evolution reactions. Additionally, theoretical studies reveal that N-doped MoS2 exhibits strong hybridization between Mo-d and N-p states, causing magnetism to evolve, as confirmed by experiments.

9.
Nano Lett ; 22(13): 5191-5197, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35639726

RESUMO

Electrical control of magnetic order in van der Waals (vdW) two-dimensional (2D) systems is appealing for high-efficiency and low-dissipation nanospintronic devices. For realistic applications, a vdW 2D material with ferromagnetic (FM) and ferroelectric (FE) orders coexisting and strongly coupling at room temperature is urgently needed. Here we present a potential candidate for nonvolatile electric-field control of magnetic orders at room temperature. Using first-principles calculations, we predict the coexistence of room-temperature FM and FE orders in a 2D transition metal carbide, where the spatial distribution of magnetic moments strongly couples with the orientation of out-of-plane electric polarization. Furthermore, an electric-field switching between interfacial FM and ferrimagnetic orders is realizable through constructing a multiferroic vdW heterostructure based on this material. These findings make a significant step toward realizing room-temperature multiferroicity and strong magnetoelectric coupling in 2D materials.

10.
J Am Chem Soc ; 144(25): 11138-11147, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35674660

RESUMO

Developing efficient hydrogen oxidation reaction (HOR) electrocatalysts in alkaline media is of great significance for anion exchange membrane fuel cells. Herein, we report the synthesis of hollow colloidosomes composed of Ru nanocrystals based on a novel gas/liquid interface self-assembly strategy. Structural characterizations reveal that much defects are present in the building block (Ru nanocrystals) of Ru colloidosomes. Theoretical calculations suggest that the defects in the Ru structure can optimize the adsorption binding energy of reaction intermediates for the HOR. Benefiting from the assembled colloidosome and optimized electronic structure, the Ru colloidosomes exhibit remarkable HOR catalytic performance in alkaline media with a mass activity higher than that of benchmark Pt/C. Our work may shed new light on the rational design of advanced electrocatalysts with an assembled structure for energy-related applications.

11.
Small ; 18(49): e2204634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310123

RESUMO

The precise facet modulation of transition metal nitrides (TMNs) has been regarded as an essential issue in boosting electrocatalytic H2 production. Compared to thermal nitridation, the plasma technique serves as a favorable alternative to directly achieve TMNs, but the apparent surface heating effect during plasma treatment inevitably causes the thermally stabilized nitride formation, resulting in the deterioration of the highly reactive facet. To optimize the hydrogen evolution reaction (HER) behavior, an auxiliary cooling assisted plasma system to selectively expose Ni3 N (2-10) with favorable activity by controlling surface heating during plasma nitridation is designed. The resultant nickel nitride (cp-Ni3 N) nano-framework delivers exceptional catalytic performance, evidenced by its low overpotential of 58 and 188 mV at the current density of 10 and 100 mA cm-2 for HER, in stark comparison with that of normal plasma and thermally fabricated Ni3 N. Operando plasma diagnostics along with numerical simulation further confirm the effect of surface heating on typical plasma parameters as well as the Ni3 N nanostructure, indicating the key factor responsible for the high-performance nitride electrocatalyst.

12.
Small ; 18(19): e2200073, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257478

RESUMO

Atomically dispersed metal catalysts often exhibit high catalytic performances, but the metal loading density must be kept low to avoid the formation of metal nanoparticles, making it difficult to improve the overall activity. Diverse strategies based on creating more anchoring sites (ASs) have been adopted to elevate the loading density. One problem of such traditional methods is that the single atoms always gather together before the saturation of all ASs. Here, a chemical scissors strategy is developed by selectively removing unwanted metallic materials after excessive loading. Different from traditional ways, the chemical scissors strategy places more emphasis on the accurate matching between the strength of etching agent and the bond energies of metal-metal/metal-substrate, thus enabling a higher loading up to 2.02 wt% even on bare substrate without any pre-treatment (the bare substrate without any pre-treatment generally only has a few ASs for single atom loading). It can be inferred that by combining with other traditional methods which can create more ASs, the loading could be further increased by saturating ASs. When used for CH3 OH generation via photocatalytic CO2 reduction, the as-made single-atom catalyst exhibits impressive catalytic activity of 597.8 ± 144.6 µmol h-1 g-1 and selectivity of 81.3 ± 3.8%.


Assuntos
Nanopartículas Metálicas , Metais , Catálise , Metais/química , Fenômenos Físicos
13.
Small ; 18(42): e2204143, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36108133

RESUMO

Magnetic field enhanced electrocatalysis has recently emerged as a promising strategy for the development of a viable and sustainable hydrogen economy via water oxidation. Generally, the effects of magnetic field enhanced electrocatalysis are complex including magnetothermal, magnetohydrodynamic and spin selectivity effects. However, the exploration of magnetic field effect on the structure regulation of electrocatalyst is still unclear whereas is also essential for underpinning the mechanism of magnetic enhancement on the electrocatalytic oxygen evolution reaction (OER) process. Here, it is identified that in a mixed NiFe2 O4 (NFO), a large magnetic field can force the Ni2+ cations to migrate from the octahedral (Oh ) sites to tetrahedral (Td ) sites. As a result, the magnetized NFO electrocatalyst (NFO-M) shows a two-fold higher current density than that of the pristine NFO in alkaline electrolytes. The OER enhancement of NFO is also observed at 1 T (NFO@1T) under an operando magnetic field. Our first-principles calculations further confirm the mechanism of magnetic field driven structure regulation and resultant OER enhancement. These findings provide a strategy of manipulating tetrahedral units of spinel oxides by a magnetic field on boosting OER performance.

14.
Phys Rev Lett ; 128(6): 067601, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213175

RESUMO

van der Waals materials possess an innate layer degree of freedom and thus are excellent candidates for exploring emergent two-dimensional ferroelectricity induced by interlayer translation. However, despite being theoretically predicted, experimental realization of this type of ferroelectricity is scarce at the current stage. Here, we demonstrate robust sliding ferroelectricity in semiconducting 1T^{'}-ReS_{2} multilayers via a combined study of theory and experiment. Room-temperature vertical ferroelectricity is observed in two-dimensional 1T^{'}-ReS_{2} with layer number N≥2. The electric polarization stems from the uncompensated charge transfer between layers and can be switched by interlayer sliding. For bilayer 1T^{'}-ReS_{2}, the ferroelectric transition temperature is estimated to be ∼405 K from the second harmonic generation measurements. Our results highlight the importance of interlayer engineering in the realization of atomic-scale ferroelectricity.

15.
Chemistry ; 28(43): e202201034, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35674444

RESUMO

The CO2 reduction reaction (CRR) represents a promising route for the clean utilization of renewable resources. But mass-transfer limitations seriously hinder the forward step. Enhancing the surface hydrophobicity by using polymers has been proved to be one of the most efficient strategies. However, as macromolecular organics, polymers on the surface hinder the transfer of charge carriers from catalysts to reactants. Herein, we describe an in-situ surface fluorination strategy to enhance the surface hydrophobicity of TiO2 without a barrier layer of organics, thus facilitating the mass transfer of CO2 to catalysts and charge transfer. With less obstruction to charge transfer, a higher CO2, and lower H+ surface concentration, the photocatalytic CRR generation rate of methanol (CH3 OH) is greatly enhanced to up to 247.15 µmol g-1 h-1 . Furthermore, we investigated the overall defects; enhancing the surface hydrophobicity of catalysts provides a general and reliable method to improve the competitiveness of CRR.

16.
Nanotechnology ; 34(4)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301681

RESUMO

Graphene nanomesh (GNM), an emerging graphene nanostructure with a tunable bandgap, has gained tremendous interests owing to its great potentials in the fields of high-performance field-effect transistors, electrochemical sensors, new generation of spintronics and energy converters. In previous works, GNM has been successfully obtained on copper foil surface by employing hydrogen as an etching agent. A more facile, and low-cost strategy for the preparation of GNM is required. Here, we demonstrated a direct and feasible means for synthesizing large-area GNM with symmetrical fractal patterns via a hydrogen-free chemical vapor deposition method. The influences of the growth time and the gas source flow on the morphology of GNM patterns were systematically investigated. Then, we exhibited the key reaction details and proposed a growth mechanism of the GNM synthesis during the hydrogen-free chemical vapor deposition process. This work provides a valuable guidance for quality control in GNM mass production.

17.
Small ; 17(20): e2008036, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33797192

RESUMO

Advanced fabrication of surface metal-organic complexes with specific coordination configuration and metal centers will facilitate to exploit novel nanomaterials with attractive electronic/magnetic properties. The precise on-surface synthesis provides an appealing strategy for in situ construction of complex organic ligands from simple precursors autonomously. In this paper, distinct organic ligands with stereo-specific conformation are separately synthesized through the well-known dehalogenative coupling. More interestingly, the exo-bent ligands promote the mono-iron chelated complexes with the Fe center significantly decoupled from the surface and of high spin, while the endo-bent ligands lead to bi-iron chelated ones instead with ferromagnetic properties.


Assuntos
Complexos de Coordenação , Ferro , Ligantes , Modelos Moleculares , Conformação Molecular
18.
Phys Chem Chem Phys ; 23(34): 18863-18868, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612424

RESUMO

Low-dimensional ferroelectricity has attracted enormous attention due to its applications in miniaturized devices and understanding the dimension effect on ferroelectricity is of significant importance. Based on first-principles calculations, we have investigated the dimension effect on the ferroelectricity of group-IV monochalcogenide MX nanoribbons. Our results reveal that H-terminated armchair GeSNRs exhibit large in-plane polarization along the ribbon direction which converges to the value of 2D GeS as the width increases, while out-of-plane polarization only arises in those with n = odd number. Interestingly, for bare A-GeSNRs, the structure with small n transforms into a paraelectric phase and the critical width for the PE/FE transition is calculated to be n = 10. On the side of zigzag GeSNRs, H-terminated ribbons possess polarization along both the out-of-plane and width directions, while bare Z-GeSNRs are expected to be polar ferromagnetic metals.

19.
Phys Rev Lett ; 124(6): 067602, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109087

RESUMO

Controlling magnetism of two-dimensional multiferroics by an external electric field provides special opportunities for both fundamental research and future development of low-cost electronic nanodevices. Here, we report a general scheme for realizing a magnetic phase transition in 2D type-I multiferroic systems through the reversal of ferroelectric polarization. Based on first-principles calculations, we demonstrate that a single-phase 2D multiferroic, namely, ReWCl_{6} monolayer, exhibits two different low-symmetric (C_{2}) phases with opposite in-plane electric polarization and different magnetic order. As a result, an antiferromagnetic-to-ferromagnetic phase transition can be realized by reversing the in-plane electric polarization through the application of an external electric field. These findings not only enrich the 2D multiferroic family, but also uncover a unique and general mechanism to control magnetism by electric field, thus stimulating experimental interest.

20.
Phys Chem Chem Phys ; 22(2): 512-517, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31828254

RESUMO

Spontaneous orbital symmetry breaking in crystals gives rise to abundant novel and interesting physical properties, which sometimes are concealed by the absence of geometrical distortions. We show that a recently discovered 3d2 system, namely the layered VI3 ferromagnetic semiconductor, is a strongly correlated and orbital ordering system. Our analysis reveals that in a VI3-like system, there could be two types of orbital splitting, which are stabilized respectively by strong electronic correlation and inter-atomic exchange interactions. Consequently, on the basis of first-principles calculations, two competing low-energy phases of VI3 monolayer (denoted as twin orbital-order phases) are discovered, in which the metal-insulator transition is driven by strong electronic correlation, and the orbital symmetry breaking is robust against geometrical distortions. In addition, similar phenomena are also observed in other VI3-like systems. These findings shed light on the unusual electronic behavior of a strongly correlated 2D system and will be interesting for nanoscale multi-functional spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA