Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FASEB J ; 38(1): e23369, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100642

RESUMO

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


Assuntos
MicroRNAs , Ausência de Peso , Humanos , Camundongos , Animais , Músculo Liso Vascular/metabolismo , MicroRNAs/metabolismo , Remodelação Vascular/genética , Aorta/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38814597

RESUMO

Objective: To investigate the mechanisms of ocular injuries in astronauts due to gravity deficit by examining changes in retinal microcirculation and visual electrophysiology in macaques subjected to simulated weightlessness. Methods: The head-down recumbency of macaques was used to simulate the movement of blood to the side of the head that occurs without microgravity. Head-down recumbency was performed with the head tilted downwards at a recommended angle of 10°. The macaques in the control group were similarly tethered to the rope but could be held in a normal position. The whole experiment lasted for 6 weeks and retinal microcirculation and visual electrophysiology information was collected at weeks 0, 3 and 6. Results: The retinal microcirculation of macaques was affected by 3 weeks of weightlessness. This includes morphological changes, such as dilation and tortuosity of the retinal microvasculature in macaques at day 21. OCT and OCTA results showed an increase in retinal and choroidal thickness and a significant decrease in vessel length density within 6×6 mm of the macula. Sustained simulated weightlessness (42 days) significantly exacerbated retina-related damage. This was evidenced by a significant decrease in the perfusion density of microcirculatory vessels, such as the macular 3×3 mm mesial vessels and the macular 6*6 mm central and medial vessels. The FAZ density in the macula 3×3 mm area began to increase. Retinal oxygen saturation testing showed a slight increase in arterial oxygen saturation. Simultaneous changes in visual electrophysiology occurred, including a significant decrease in a- and b-wave amplitudes on the dark-vision electroretinogram and a significant decrease in the amplitude of the bright-vision negative wave response. The peak timing of the flash visual evoked potential component P1 was significantly delayed compared to its baseline and time-matched control. Conclusions: Sustained simulated weightlessness (42 days) significantly exacerbated retina-related damage, with both reduced macular blood supply and increased FAZ density suggesting the development of retinal ischemic changes, which disrupt visual electrophysiology. Retinal damage in human astronauts under long-term outer space conditions may be prevented by intervening in ischemic changes in the retina during the early stages of weightlessness.

3.
FASEB J ; 36(10): e22536, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070186

RESUMO

The liver is an essential multifunctional organ and constantly communicates with nearly all the tissues in the body. Spaceflight or simulated microgravity has a significant impact on the livers of rodent models, including lipid accumulation and inflammatory cell infiltration. Whether similar liver lipotoxicity could occur in humans is not known, even though altered circulating cholesterol profile has been reported in astronauts. Using a 42-day head-down bed rest (HDBR) model in rhesus macaques, the present study investigated whether simulated microgravity alters the liver of non-human primates at the transcriptome and metabolome levels. Its association with stress and intestinal changes was also explored. Compared to the controls, the HDBR monkeys showed mild liver injury, elevated ANGPTL3 level in the plasma, and accumulation of fat vacuoles and inflammatory cells in the liver. Altered transcriptome signatures with up-regulation of genes in lipid metabolisms and down-regulation of genes in innate immune defense were also found in HDBR group-derived liver samples. The metabolic profiling of the liver revealed mildly disturbed fatty acid metabolism in the liver of HDBR monkeys. The intestinal dysbiosis, its associated endotoxemia and changes in the composition of bile acids, and elevated stress hormone in HDBR monkeys may contribute to the altered lipid metabolisms in the liver. These data indicate that liver metabolic functions and gut-liver axis should be closely monitored in prolonged spaceflight to facilitate strategy design to improve and maintain metabolic homeostasis.


Assuntos
Ausência de Peso , Animais , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Lipídeos , Fígado/metabolismo , Macaca mulatta , Ausência de Peso/efeitos adversos
4.
J Digit Imaging ; 36(6): 2411-2426, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37714969

RESUMO

Histological assessment of skeletal muscle slices is very important for the accurate evaluation of weightless muscle atrophy. The accurate identification and segmentation of muscle fiber boundary is an important prerequisite for the evaluation of skeletal muscle fiber atrophy. However, there are many challenges to segment muscle fiber from immunofluorescence images, including the presence of low contrast in fiber boundaries in immunofluorescence images and the influence of background noise. Due to the limitations of traditional convolutional neural network-based segmentation methods in capturing global information, they cannot achieve ideal segmentation results. In this paper, we propose a muscle fiber segmentation network (MF-Net) method for effective segmentation of macaque muscle fibers in immunofluorescence images. The network adopts a dual encoder branch composed of convolutional neural networks and transformer to effectively capture local and global feature information in the immunofluorescence image, highlight foreground features, and suppress irrelevant background noise. In addition, a low-level feature decoder module is proposed to capture more global context information by combining different image scales to supplement the missing detail pixels. In this study, a comprehensive experiment was carried out on the immunofluorescence datasets of six macaques' weightlessness models and compared with the state-of-the-art deep learning model. It is proved from five segmentation indices that the proposed automatic segmentation method can be accurately and effectively applied to muscle fiber segmentation in shank immunofluorescence images.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Imunofluorescência , Músculo Esquelético/diagnóstico por imagem , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
5.
Circulation ; 144(9): 694-711, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34139860

RESUMO

BACKGROUND: Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS: To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS: The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS: We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.


Assuntos
Cardiomegalia/metabolismo , Proteínas Desgrenhadas/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Biomarcadores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/diagnóstico , Cardiomegalia/etiologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Suscetibilidade a Doenças , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/prevenção & controle , Histona Desacetilases/metabolismo , Humanos , Imuno-Histoquímica , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Estabilidade Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
Exp Eye Res ; 223: 109200, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35932903

RESUMO

To better perform space missions and develop human spaceflights, the eye health of astronauts is receiving increasing attention from researchers. In this study, we used prolonged tail suspension to simulate microgravity cephalad fluid shift in space to observe intraocular pressure (IOP) changes, retinal structure, and optic nerve damage in rats. We observed significant choroidal thickening and optic nerve demyelination lesions in the rats in each experimental group. At the cellular level, retinal ganglion cells (RGCs) survival was significantly reduced, optic nerve oligodendrocytes were reduced, and apoptotic factors and microglia-mediated inflammation-related factors were detected in both the retina and optic nerve. The severity of these changes increased with increasing tails suspension time. In conclusion, simulated long-term microgravity can lead to slight intraocular pressure fluctuations, choroidal thickening, reduced RGCs survival, and optic nerve demyelination in rats.


Assuntos
Doenças Desmielinizantes , Oftalmopatias , Voo Espacial , Ausência de Peso , Animais , Astronautas , Doenças Desmielinizantes/patologia , Oftalmopatias/patologia , Humanos , Pressão Intraocular , Ratos , Células Ganglionares da Retina/patologia , Ausência de Peso/efeitos adversos
7.
FASEB J ; 33(6): 6904-6918, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30811956

RESUMO

Spaceflight leads to health risks including bone demineralization, skeletal muscle atrophy, cardiovascular dysfunction, and disorders of almost all physiologic systems. However, the impacts of microgravity on blood lineage cells and hematopoietic stem cells (HSCs) in vivo are largely unknown. In this study, we analyzed peripheral blood samples from 6 astronauts who had participated in spaceflight missions and found significant changes in several cell populations at different time points. These dynamic alterations of lineage cells and the role of HSCs were further studied in a mouse model, using hindlimb unloading (HU) to simulate microgravity. Large reductions in the frequency of NK cells, B cells, and erythrocyte precursors in the bone marrow of the HU mice were observed, together with an increased frequency of T cells, neutrophils, and HSCs. T cell levels recovered faster than those of B cells and erythrocyte precursors, whereas the recovery rates of NK cells and granulocytes were slow. In addition, competitive reconstitution experiments demonstrated the impaired function of HSCs, although these changes were reversible. Deep sequencing showed changes in the expression of regulatory molecules important for the differentiation of HSCs. This study provides the first determination of altered HSC function under simulated microgravity in vivo. The impairment of HSC function and differentiation provides an explanation for the immune disorders that occur under simulated microgravity. Thus, our findings demonstrated that spaceflight and simulated microgravity disrupt the homeostasis of immune system and cause dynamic alterations on both HSCs and lineage cells.-Cao, D., Song, J., Ling, S., Niu, S., Lu, L., Cui, Z., Li, Y., Hao, S., Zhong, G., Qi, Z., Sun, W., Yuan, X., Li, H., Zhao, D., Jin, X., Liu, C., Wu, X., Kan, G., Cao, H., Kang, Y., Yu, S., Li, Y. Hematopoietic stem cells and lineage cells undergo dynamic alterations under microgravity and recovery conditions.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Elevação dos Membros Posteriores/fisiologia , Homeostase , Recuperação de Função Fisiológica , Simulação de Ausência de Peso , Animais , Astronautas , Eritrócitos/citologia , Humanos , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Voo Espacial
8.
Biochem Biophys Res Commun ; 485(3): 591-597, 2017 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27988334

RESUMO

Microgravity has many detrimental impact on brain functions, however the underlying mechanism remain unclear. In present study, 28 days of tail-suspension (30°) was used to simulate microgravity in rats. We showed that oxidative stress in hippocampus was increased after 28 days of simulated microgravity in consideration of the decreased expression of NF-E2-related factor 2 (Nrf2) and the declined activities of total superoxide dismutase (T-SOD), CuZn-SOD, glutathione peroxidase (GSH-PX) and total antioxidant capacity (T-AOC). Using RNA-seq, we further investigated the effect of simulated microgravity on the expression of genes in hippocampus, and 849 genes were found to be differentially expressed. According to pathway analysis, the differentially expressed genes involved in cytoskeleton, metabolism, immunity, transcription regulation, etc. It is interesting to note that the differentially expressed genes were involved in hypoxia-associated pathway. In agreement with this, the expression of hypoxia induced factor-1α (HIF-1α), the master regulator of oxygen homeostasis, was significantly increased. Meanwhile, HIF-2α, a HIF-1α paralog, was elevated compared with the control group. The expression of pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA) and vascular endothelial growth factor (VEGF), three well-defined downstream targets of HIF-1α, were up-regulated in hippocampus after 28 days of simulated microgravity exposure. Additionally, brain oxygen saturation (SO2) and blood flow analyzed by the tissue oxygen analysis system were also significantly reduced. These findings indicate that simulated microgravity might cause an alteration in oxygen homeostasis, providing novel insight into better understanding of how simulated microgravity affects the function of hippocampus and a new direction to the development of countermeasure for brain dysfunction during spaceflight (actual microgravity).


Assuntos
Elevação dos Membros Posteriores/métodos , Hipocampo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ausência de Peso , Animais , Western Blotting , Perfilação da Expressão Gênica/métodos , Glutationa Peroxidase/metabolismo , Hipocampo/irrigação sanguínea , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/metabolismo , Fatores de Tempo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Biotechnol Lett ; 38(12): 2071-2080, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27623796

RESUMO

OBJECTIVE: To investigate the expression of memory-related antioxidant genes and miRNAs under simulated weightlessness and the regulation of mechano growth factor (MGF) E domain, the peptide preventing nerve damage. RESULTS: Igf-iea and mgf mRNA levels, expression of antioxidant genes sod1 and sod2 and levels of miR-134 and miR-125b-3p increased in rat hippocampus after 14 days tail suspension to simulate weightlessness which was inhibited with intramuscular injection of E domain peptide. Therefore, administration of MGF E domain peptide could reverse increased expressions of memory-related igf-iea, mgf, sod1, sod2, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. CONCLUSIONS: MGF may regulate the redox state and miRNA-targeted NR-CREB signaling, and intramuscular injection may be the alternative administration because of its safety, convenience and ability to pass through the blood brain barrier.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , MicroRNAs/genética , Peptídeos/farmacologia , Ausência de Peso , Animais , Injeções Intramusculares , Fator de Crescimento Insulin-Like I/administração & dosagem , Masculino , Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley
10.
Cell Physiol Biochem ; 33(2): 321-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24525846

RESUMO

BACKGROUND/AIMS: The maximum lifespan of the naked mole rat is over 28.3 years, which exceeds that of any other rodent species, suggesting that age-related changes in its body composition and functionality are either attenuated or delayed in this extraordinarily long-lived species. However, the mechanisms underlying the aging process in this species are poorly understood. In this study, we investigated whether long-lived naked mole rats display more autophagic activity than short-lived mice. METHODS: Hepatic stellate cells isolated from naked mole rats were treated with 50 nM rapamycin or 20 mM 3-methyladenine (3-MA) for 12 or 24 h. Expression of the autophagy marker proteins LC3-II and beclin 1 was measured with western blotting and immunohistochemistry. The induction of apoptosis was analyzed by flow cytometry. RESULTS: Our results demonstrate that one-day-old naked mole rats have higher levels of autophagy than one-day-old short-lived C57BL/6 mice, and that both adult naked mole rats (eight months old) and adult C57BL/6 mice (eight weeks old) have high basal levels of autophagy, which may be an important mechanism inhibiting aging and reducing the risk of age-related diseases. CONCLUSION: Here, we report that autophagy facilitated the survival of hepatic stellate cells from the naked mole rat, and that treatment with 3-MA or rapamycin increased the ratio of apoptotic cells to normal hepatic stellate cells.


Assuntos
Autofagia/fisiologia , Longevidade/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Imunossupressores/farmacologia , Longevidade/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Ratos-Toupeira , Sirolimo/farmacologia
11.
Cell Physiol Biochem ; 34(2): 463-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25096031

RESUMO

BACKGROUND/AIMS: Naked mole rats (NMRs) survive and thrive in dark, dank environments with low levels of oxygen and poor quality nutrition. Their long lifespan is attributed to sustained good health and pronounced resistance to cancer. Physiological and biochemical processes, such as autophagy, may contribute to the successful aging of this exceptionally long-lived species. We demonstrated that NMRs have higher levels of autophagy than short-lived C57BL/6 mice, and this may play an important role in the maintenance of cellular protein quality and the defense of cells against intracellular and extracellular aggressors in NMRs. The present study assesses autophagy as a means for cells to flexibly respond to environmental changes (H2O2 treatment and a shortage of nutrients). METHODS: Primary NMR HSCs were isolated from liver and treated with serum-free medium. Cells in the experimental group were incubated with different concentrations of hydrogen peroxide (H2O2) in the presence and / or absence of 3-MA (5 mM).The LC3-II/LC3-I ratio was determined by western blot analysis. Western blotting was performed to analyze the expression level of Beclin 1 protein. Apoptosis and cell-cycle progression were analyzed by flow cytometry. RESULTS: Our data reveal that both poor quality nutrition and H2O2 treatment induces apoptosis and autophagy in NMR hepatic stellate cells(HSCs). CONCLUSION: NMR cells have the capacity to induce cell death through apoptosis and downregulate the energy consuming processes through inhibition of proliferation when they become superfluous or irreversibly damaged.


Assuntos
Autofagia , Células Estreladas do Fígado/imunologia , Peróxido de Hidrogênio/farmacologia , Ratos-Toupeira/fisiologia , Estresse Fisiológico , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase
12.
Aviat Space Environ Med ; 85(2): 130-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24597156

RESUMO

INTRODUCTION: Skeletal unloading during a spaceflight could result in bone loss and osteopenia, ultimately leading to poor bone strength. The purpose of the present study was to investigate the influence of bone loss on the dynamic behavior of cancellous bone. METHODS: Microgravity-induced bone loss and osteopenia were simulated in a macaque head-down bed rest (HDBR) model, in which 20 macaques were laid on a bed tilted by -6 degrees from the horizontal. These macaques were randomly divided into control (Con) and head down bed rest (HDBR) groups. After 28 d, 5 macaques chosen at random from each group were tested for bone density and mechanical properties, and the obtained data was used to develop a density-based constitutive equation; the remaining animals were tested only for bone density in order to attain statistical power. A split Hopkinson bar was used to monitor the dynamic response of cancellous bone. Cancellous bone deformation under high strain rate conditions was recorded by high-speed videos. RESULTS: Compared with the Con group, the Young's modulus of cancellous bone from HDBR macaque lumbar vertebrae were decreased by 6.03%. Based on the static and dynamic experimental results, parameters in the Maxwell nonlinear viscoelasticity material model were estimated. DISCUSSION: This model of cancellous bone under high strain rate was useful to establish the medical tolerance and evolution criteria of impact-related trauma by finite element method calculations.


Assuntos
Repouso em Cama/efeitos adversos , Doenças Ósseas Metabólicas/fisiopatologia , Reabsorção Óssea/fisiopatologia , Decúbito Inclinado com Rebaixamento da Cabeça/efeitos adversos , Vértebras Lombares/fisiopatologia , Animais , Densidade Óssea , Doenças Ósseas Metabólicas/etiologia , Reabsorção Óssea/etiologia , Módulo de Elasticidade , Macaca , Voo Espacial , Ausência de Peso/efeitos adversos
13.
J Imaging Inform Med ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653909

RESUMO

Radiomics features have been widely used as novel biomarkers in the diagnosis of various diseases, but whether radiomics features derived from hematoxylin and eosin (H&E) images can evaluate muscle atrophy has not been studied. Therefore, this study aims to establish a new biomarker based on H&E images using radiomics methods to quantitatively analyze H&E images, which is crucial for improving the accuracy of muscle atrophy assessment. Firstly, a weightless muscle atrophy model was established by laying macaques in bed, and H&E images of the shank muscle fibers of the control and bed rest (BR) macaques were collected. Muscle fibers were accurately segmented by designing a semi-supervised segmentation framework based on contrastive learning. Then, 77 radiomics features were extracted from the segmented muscle fibers, and a stable subset of features was selected through the LASSO method. Finally, the correlation between radiomics features and muscle atrophy was analyzed using a support vector machine (SVM) classifier. The semi-supervised segmentation results show that the proposed method had an average Spearman's and intra-class correlation coefficient (ICC) of 88% and 86% compared to manually extracted features, respectively. Radiomics analysis showed that the AUC of the muscle atrophy evaluation model based on H&E images was 96.87%. For individual features, GLSZM_SZE outperformed other features in terms of AUC (91.5%) and ACC (84.4%). In summary, the feature extraction based on the semi-supervised segmentation method is feasible and reliable for subsequent radiomics research. Texture features have greater advantages in evaluating muscle atrophy compared to other features. This study provides important biomarkers for accurate diagnosis of muscle atrophy.

14.
Life Sci Space Res (Amst) ; 40: 115-125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245336

RESUMO

The circadian clock extensively regulates physiology and behavior. In space, astronauts encounter many environmental factors that are dramatically different from those on Earth; however, the effects of these factors on circadian rhythms and the mechanisms remain largely unknown. The present study aimed to investigate the changes in the mouse diurnal rhythm and gut microbiome under simulated space capsule conditions, including microgravity, noise and low atmospheric pressure (LAP). Noise and LAP were loaded in the capsule while the conditions in the animal room remained constant. The mice in the capsule showed disturbed locomotor rhythms and faster adaptation to a 6-h phase advance. RNA sequencing of hypothalamus samples containing the suprachiasmatic nucleus (SCN) revealed that microgravity simulated by hind limb unloading (HU) and exposure to noise and LAP led to decreases in the quantities of differentially expressed genes (DEGs), including circadian clock genes. Changes in the rhythmicity of genes implicated in pathways of cardiovascular deconditioning and more concentrated phases were found under HU or noise and LAP. Furthermore, 16S rRNA sequencing revealed dysbiosis in the gut microbiome, and noise and LAP may repress the temporal discrepancy in the microbiome community structure induced by microgravity. Changes in diurnal oscillations were observed in a number of gut bacteria with critical physiological consequences on metabolism and immunodefense. We also found that the superimposition of noise and LAP may repress normal changes in global gene expression and adaptation in the gut microbiome. Our data demonstrate that in addition to microgravity, exposure to noise and LAP affect the robustness of circadian rhythms and the community structure of the gut microbiome, and these factors may interfere with each other in their adaptation to respective conditions. These findings are important for furthering our understanding of the alterations in circadian rhythms in the complex environment of space.


Assuntos
Microbioma Gastrointestinal , Ausência de Peso , Camundongos , Animais , Ausência de Peso/efeitos adversos , RNA Ribossômico 16S/genética , Ritmo Circadiano/genética , Pressão Atmosférica
15.
Circulation ; 126(25): 3028-40, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23151343

RESUMO

BACKGROUND: Sustained cardiac pressure overload-induced hypertrophy and pathological remodeling frequently leads to heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) has been identified to be an important regulator of cell proliferation, differentiation, and apoptosis. However, the physiological role of CKIP-1 in the heart is unknown. METHODS AND RESULTS: The results of echocardiography and histology demonstrate that CKIP-1-deficient mice exhibit spontaneous cardiac hypertrophy with aging and hypersensitivity to pressure overload-induced pathological cardiac hypertrophy, as well. Transgenic mice with cardiac-specific overexpression of CKIP-1 showed resistance to cardiac hypertrophy in response to pressure overload. The results of GST pull-down and coimmunoprecipitation assays showed the interaction between CKIP-1 and histone deacetylase 4 (HDAC4), through which they synergistically inhibited transcriptional activity of myocyte-specific enhancer factor 2C. By directly interacting with the catalytic subunit of phosphatase 2A, CKIP-1 overexpression enhanced the binding of catalytic subunit of phosphatase-2A to HDAC4 and promoted HDAC4 dephosphorylation. CONCLUSIONS: CKIP-1 was found to be an inhibitor of cardiac hypertrophy by upregulating the dephosphorylation of HDAC4 through the recruitment of protein phosphatase 2A. These results demonstrated a unique function of CKIP-1, by which it suppresses cardiac hypertrophy through its capacity to regulate HDAC4 dephosphorylation and fetal cardiac genes expression.


Assuntos
Cardiomegalia/prevenção & controle , Proteínas de Transporte/fisiologia , Histona Desacetilases/fisiologia , Proteína Fosfatase 2/fisiologia , Fatores Etários , Animais , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Fatores de Regulação Miogênica/fisiologia , Fosforilação , Transcrição Gênica
16.
Bone Res ; 11(1): 53, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872163

RESUMO

Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Camundongos Transgênicos , MicroRNAs/genética , Osteogênese/genética , RNA Longo não Codificante/genética
17.
iScience ; 26(12): 108556, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125015

RESUMO

Spaceflight is physically demanding and can negatively affect astronauts' health. It has been shown that the human gut microbiota and cardiac function are affected by spaceflight and simulated spaceflight. This study investigated the effects of the gut microbiota on simulated spaceflight-induced cardiac remodeling using 10° of head-down bed rest (HDBR) in rhesus macaques and 30° of hindlimb unloading (HU) in mice. The gut microbiota, fecal metabolites, and cardiac remodeling were markedly affected by HDBR in macaques and HU in mice, cardiac remodeling in control mice was affected by the gut microbiota of HU mice and that of HU mice was protected by the gut microbiota of control mice, and there was a correlation between cardiac remodeling and the gut microbial-derived metabolite trimethylamine N-oxide. These findings suggest that spaceflight can affect cardiac remodeling by modulating the gut microbiota and fecal metabolites.

18.
Int J Ophthalmol ; 15(2): 336-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186696

RESUMO

With the continuing progress in space exploration, a new and perplexing condition related to spaceflight ocular syndrome has emerged in the past four decades. National Aeronautics and Space Administration (NASA) has named this condition "spaceflight-associated neuro-ocular syndrome" (SANS). This article gives an overview of the current research about SANS and traditional Chinese medicine (TCM) by analyzing the existing publications on PubMed and CNKI and reports from NASA about SANS, summarizing the potential pathogenesis of SANS and physical interventions for treating SANS, and discussing the feasibility of treating SANS with TCM. Due to the unique characteristics of the space environment, it is infeasible to conduct large-scale human studies of SANS. SANS may be the result of the interaction of multiple factors, including inflammation and fluid displacement in the optic nerve sheath and cerebrospinal fluid. We should pay attention to SANS. Visual function is not only related to the health of astronauts but also closely related to space operations. TCM has antioxidative stress and antiapoptotic effects and is widely used for optic nerve diseases. TCM has great potential to prevent SANS.

19.
Bone Res ; 10(1): 18, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210394

RESUMO

Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength, whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lncRNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lncRNAs in osteoblasts and identified Neat1, the most clearly decreased lncRNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 mRNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lncRNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight- or bedrest-induced bone loss and age-related osteoporosis.

20.
Front Physiol ; 12: 678863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211403

RESUMO

Different kinds of mechanical stimuli acting on the heart lead to different myocardial phenotypes. Physiological stress, such as exercise, leads to adaptive cardiac hypertrophy, which is characterized by a normal cardiac structure and improved cardiac function. Pathological stress, such as sustained cardiac pressure overload, causes maladaptive cardiac remodeling and, eventually, heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) is an important regulator of pathological cardiac remodeling. However, the role of CKIP-1 in physiological cardiac hypertrophy is unknown. We subjected wild-type (WT) mice to a swimming exercise program for 21 days, which caused an increase in myocardial CKIP-1 protein and mRNA expression. We then subjected CKIP-1 knockout (KO) mice and myocardial-specific CKIP-1-overexpressing mice to the 21-day swimming exercise program. Histological and echocardiography analyses revealed that CKIP-1 KO mice underwent pathological cardiac remodeling after swimming, whereas the CKIP-1-overexpressing mice had a similar cardiac phenotype to the WT controls. Histone deacetylase 4 (HDAC4) is a key molecule in the signaling cascade associated with pathological hypertrophy; the phosphorylation levels of HDAC4 were markedly higher in CKIP-1 KO mouse hearts after the swimming exercise program. The phosphorylation levels of HDAC4 did not change after swimming in the hearts of CKIP-1-overexpressing or WT mice. Our results indicate that swimming, a mechanical stress that leads to physiological hypertrophy, triggers pathological cardiac remodeling in CKIP-1 KO mice. CKIP-1 is necessary for physiological cardiac hypertrophy in vivo, and for modulating the phosphorylation level of HDAC4 after physiological stress. Genetically engineering CKIP-1 expression affected heart health in response to exercise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA