Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Annu Rev Genet ; 54: 511-537, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32926793

RESUMO

Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, Mycobacterium tuberculosis, has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of M. tuberculosis isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.


Assuntos
Variação Genética/genética , Mycobacterium tuberculosis/genética , Animais , Genótipo , Humanos , Transcrição Gênica/genética , Tuberculose/microbiologia
2.
Crit Rev Microbiol ; : 1-20, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909097

RESUMO

Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.

3.
BMC Infect Dis ; 21(1): 466, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022850

RESUMO

BACKGROUND: Pulmonary tuberculosis (TB) in people living with HIV (PLH) frequently presents as sputum smear-negative. However, clinical trials of TB in adults often use smear-positive individuals to ensure measurable bacterial responses following initiation of treatment, thereby excluding HIV-infected patients from trials. METHODS: In this prospective case cohort study, 118 HIV-seropositive TB patients were assessed prior to initiation of standard four-drug TB therapy and at several time points through 35 days. Sputum bacillary load, as a marker of treatment response, was determined serially by: smear microscopy, Xpert MTB/RIF, liquid culture, and colony counts on agar medium. RESULTS: By all four measures, patients who were baseline smear-positive had higher bacterial loads than those presenting as smear-negative, until day 35. However, most smear-negative PLH had significant bacillary load at enrolment and their mycobacteria were cleared more rapidly than smear-positive patients. Smear-negative patients' decline in bacillary load, determined by colony counts, was linear to day 7 suggesting measurable bactericidal activity. Moreover, the decrease in bacterial counts was comparable to smear-positive individuals. Increasing cycle threshold values (Ct) on the Xpert assay in smear-positive patients to day 14 implied decreasing bacterial load. CONCLUSION: Our data suggest that smear-negative PLH can be included in clinical trials of novel treatment regimens as they contain sufficient viable bacteria, but allowances for late exclusions would have to be made in sample size estimations. We also show that increases in Ct in smear-positive patients to day 14 reflect treatment responses and the Xpert MTB/RIF assay could be used as biomarker for early treatment response.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS , Antituberculosos/uso terapêutico , Carga Bacteriana/efeitos dos fármacos , Soropositividade para HIV , HIV/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/virologia , Adulto , Fármacos Anti-HIV/uso terapêutico , Testes Diagnósticos de Rotina , Feminino , Seguimentos , Soropositividade para HIV/tratamento farmacológico , Soropositividade para HIV/virologia , Humanos , Masculino , Microscopia , Técnicas de Amplificação de Ácido Nucleico , Estudos Prospectivos , Resultado do Tratamento , Tuberculose Pulmonar/virologia
4.
Adv Appl Microbiol ; 112: 67-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32762868

RESUMO

The bacterial peptidoglycan layer forms a complex mesh-like structure that surrounds the cell, imparting rigidity to withstand cytoplasmic turgor and the ability to tolerate stress. As peptidoglycan has been the target of numerous clinically successful antimicrobials such as penicillin, the biosynthesis, remodeling and recycling of this polymer has been the subject of much interest. Herein, we review recent advances in the understanding of peptidoglycan biosynthesis and remodeling in a variety of different organisms. In order for bacterial cells to grow and divide, remodeling of cross-linked peptidoglycan is essential hence, we also summarize the activity of important peptidoglycan hydrolases and how their functions differ in various species. There is a growing body of evidence highlighting complex regulatory mechanisms for peptidoglycan metabolism including protein interactions, phosphorylation and protein degradation and we summarize key recent findings in this regard. Finally, we provide an overview of peptidoglycan recycling and how components of this pathway mediate resistance to drugs. In the face of growing antimicrobial resistance, these recent advances are expected to uncover new drug targets in peptidoglycan metabolism, which can be used to develop novel therapies.


Assuntos
Bactérias/metabolismo , Peptidoglicano/metabolismo , Bactérias/classificação , Bactérias/citologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/química , Fosforilação , Mapas de Interação de Proteínas , Especificidade da Espécie , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
J Infect Dis ; 219(10): 1518-1524, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30590592

RESUMO

New therapeutics to augment current approaches and shorten treatment duration are of critical importance for combating tuberculosis (TB), especially those with novel mechanisms of action to counter the emergence of drug-resistant TB. Host-directed therapy (HDT) offers a novel strategy with mechanisms that include activating immune defense mechanisms or ameliorating tissue damage. These and related concepts will be discussed along with issues that emerged from the workshop organized by the Stop TB Working Group on New Drugs, held at the Gordon Research Conference for Tuberculosis Drug Development in Lucca, Italy in June 2017, titled "Strategic Discussion on Repurposing Drugs & Host Directed Therapies for TB." In this review, we will highlight recent data regarding drugs, pathways, and concepts that are important for successful development of HDTs for TB.


Assuntos
Antituberculosos/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/imunologia
6.
Adv Appl Microbiol ; 108: 115-161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31495404

RESUMO

Tuberculosis (TB) claims more human lives than any other infectious organism. The lethal synergy between TB-HIV infection and the rapid emergence of drug resistant strains has created a global public health threat that requires urgent attention. Mycobacterium tuberculosis, the causative agent of TB is an exquisitely well-adapted human pathogen, displaying the ability to promptly remodel metabolism when encountering stressful environments during pathogenesis. A careful study of the mechanisms that enable this adaptation will enhance the understanding of key aspects related to the microbiology of TB disease. However, these efforts require microbiological model systems that mimic host conditions in the laboratory. Herein, we describe several in vitro model systems that generate non-replicating and differentially culturable mycobacteria. The changes that occur in the metabolism of M. tuberculosis in some of these models and how these relate to those reported for human TB disease are discussed. We describe mechanisms that tubercle bacteria use to resuscitate from these non-replicating conditions, together with phenotypic heterogeneity in terms of culturabiliy of M. tuberculosis in sputum. Transcriptional changes in M. tuberculosis that allow for adaptation of the organism to the lung environment are also summarized. Finally, given the emerging importance of the microbiome in various infectious diseases, we provide a description of how the lung and gut microbiome affect susceptibility to TB infection and response to treatment. Consideration of these collective aspects will enhance the understanding of basic metabolism, physiology, drug tolerance and persistence in M. tuberculosis to enable development of new therapeutic interventions.


Assuntos
Tuberculose Latente/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose Pulmonar/microbiologia , Animais , Antituberculosos/farmacologia , Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal , Humanos , Hipóxia/metabolismo , Tuberculose Latente/tratamento farmacológico , Pulmão/microbiologia , Microbiota , Mycobacterium tuberculosis/metabolismo , Nutrientes/metabolismo , Ressuscitação , Escarro/microbiologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose Pulmonar/tratamento farmacológico
7.
IUBMB Life ; 70(9): 855-868, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29717815

RESUMO

Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by ß-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, ß-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating ß-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in ß-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one ß-lactamase homologue is present, suggesting that enzymatic degradation of ß-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate ß-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of ß-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.


Assuntos
Aminoaciltransferases/metabolismo , Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Infecções Respiratórias/metabolismo , Resistência beta-Lactâmica , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Humanos , Peso Molecular , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia
8.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29915116

RESUMO

Resuscitation-promoting factors (Rpfs) have previously been shown to act as growth-stimulatory molecules via their lysozyme-like activity on peptidoglycan in the bacterial cell wall. In this study, we investigated the ability of Mycobacterium smegmatis strains lacking rpf genes to form biofilms and tested their susceptibilities to cell wall-targeting agents. M. smegmatis contains four distinct rpf homologues, namely, MSMEG_5700 (rpfA), MSMEG_5439 (rpfB), MSMEG_4640 (rpfE2), and MSMEG_4643 (rpfE). During axenic growth of the wild-type strain, all four mRNA transcripts were expressed to various degrees, but the expression of MSMEG_4643 was significantly greater during exponential growth. Similarly, all rpf mRNA transcripts could be detected in biofilms grown for 7, 14, and 28 days, with MSMEG_4643 expressed at the highest abundance after 7 days. In-frame unmarked deletion mutants (single and combinatorial) were generated and displayed altered colony morphologies and the inability to form typical biofilms. Moreover, any strain lacking rpfA and rpfB simultaneously exhibited increased susceptibility to rifampin, vancomycin, and SDS. Exogenous Rpf supplementation in the form of culture filtrate failed to restore biofilm formation. Liquid chromatography-mass spectrometry (LC-MS) analysis of peptidoglycan (PG) suggested a reduction in 4-3 cross-linked PG in the ΔrpfABEE2 mutant strain. In addition, the level of PG-repeat units terminating in 1,6-anhydroMurNAc appeared to be significantly reduced in the quadruple rpf mutant. Collectively, our data have shown that Rpfs play an important role in biofilm formation, possibly through alterations in PG cross-linking and the production of signaling molecules.IMPORTANCE The cell wall of pathogenic mycobacteria is composed of peptidoglycan, arabinogalactan, mycolic acids, and an outer capsule. This inherent complexity renders it resistant to many antibiotics. Consequently, its biosynthesis and remodeling during growth directly impact viability. Resuscitation-promoting factors (Rpfs), enzymes with lytic transglycosylase activity, have been associated with the revival of dormant cells and subsequent resumption of vegetative growth. Mycobacterium smegmatis, a soil saprophyte and close relative of the human pathogen Mycobacterium tuberculosis, encodes four distinct Rpfs. Herein, we assessed the relationship between Rpfs and biofilm formation, which is used as a model to study drug tolerance and bacterial signaling in mycobacteria. We demonstrated that progressive deletion of rpf genes hampered the development of biofilms and reduced drug tolerance. These effects were accompanied by a reduction in muropeptide production and altered peptidoglycan cross-linking. Collectively, these observations point to an important role for Rpfs in mycobacterial communication and drug tolerance.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Parede Celular/química , Citocinas/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/genética , Peptidoglicano/genética , Antibacterianos/farmacologia , Parede Celular/genética , Deleção de Genes , Testes de Sensibilidade Microbiana , Ácidos Murâmicos/química , Mycobacterium smegmatis/metabolismo , RNA Mensageiro/genética , Rifampina/farmacologia , Dodecilsulfato de Sódio/farmacologia , Vancomicina/farmacologia
9.
J Clin Microbiol ; 55(12): 3384-3394, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28931561

RESUMO

Molecular diagnostics have revolutionized the management of health care through enhanced detection of disease or infection and effective enrollment into treatment. In recognition of this, the World Health Organization approved the rollout of nucleic acid amplification technologies for identification of Mycobacterium tuberculosis using platforms such as GeneXpert MTB/RIF, the GenoType MTBDRplus line probe assay, and, more recently, GeneXpert MTB/RIF Ultra. These assays can simultaneously detect tuberculosis infection and assess rifampin resistance. However, their widespread use in health systems requires verification and quality assurance programs. To enable development of these, we report the construction of genetically modified strains of Mycobacterium smegmatis that mimic the profile of Mycobacterium tuberculosis on both the GeneXpert MTB/RIF and the MTBDRplus line probe diagnostic tests. Using site-specific gene editing, we also created derivatives that faithfully mimic the diagnostic result of rifampin-resistant M. tuberculosis, with mutations at positions 513, 516, 526, 531, and 533 in the rifampin resistance-determining region of the rpoB gene. Next, we extended this approach to other diseases and demonstrated that a Staphylococcus aureus gene sequence can be introduced into M. smegmatis to generate a positive response for the SCCmec probe in the GeneXpert SA Nasal Complete molecular diagnostic cartridge, designed for identification of methicillin-resistant S. aureus These biomimetic strains are cost-effective, have low biohazard content, accurately mimic drug resistance, and can be produced with relative ease, thus illustrating their potential for widespread use as verification standards for diagnosis of a variety of diseases.


Assuntos
Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Mycobacterium tuberculosis/isolamento & purificação , Patologia Molecular/métodos , Patologia Molecular/normas , Padrões de Referência , Infecções Estafilocócicas/diagnóstico , Tuberculose/diagnóstico , DNA Bacteriano/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Mutação , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Recombinação Genética
10.
Am J Respir Crit Care Med ; 194(12): 1532-1540, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27387272

RESUMO

RATIONALE: Recent studies suggest that baseline tuberculous sputum comprises a mixture of routinely culturable and differentially culturable tubercle bacteria (DCTB). The latter seems to be drug tolerant and dependent on resuscitation-promoting factors (Rpfs). OBJECTIVES: To further explore this, we assessed sputum from patients with tuberculosis for DCTB and studied the impact of exogenous culture filtrate (CF) supplementation ex vivo. METHODS: Sputum samples from adults with tuberculosis and HIV-1 and adults with no HIV-1 were used for most probable number (MPN) assays supplemented with CF and Rpf-deficient CF, to detect CF-dependent and Rpf-independent DCTB, respectively. MEASUREMENTS AND MAIN RESULTS: In 110 individuals, 19.1% harbored CF-dependent DCTB and no Rpf-independent DCTB. Furthermore, 11.8% yielded Rpf-independent DCTB with no CF-dependent DCTB. In addition, 53.6% displayed both CF-dependent and Rpf-independent DCTB, 1.8% carried CF-independent DCTB, and 13.6% had no DCTB. Sputum from individuals without HIV-1 yielded higher CF-supplemented MPN counts compared with counterparts with HIV-1. Furthermore, individuals with HIV-1 with CD4 counts greater than 200 cells/mm3 displayed higher CF-supplemented MPN counts compared with participants with HIV-1 with CD4 counts less than 200 cells/mm3. CF supplementation allowed for detection of mycobacteria in 34 patients with no culturable bacteria on solid media. Additionally, the use of CF enhanced detection of sputum smear-negative individuals. CONCLUSIONS: These observations demonstrate a novel Rpf-independent DCTB population in sputum and reveal that reduced host immunity is associated with lower prevalence of CF-responsive bacteria. Quantification of DCTB in standard TB diagnosis would be beneficial because these organisms provide a putative biomarker to monitor treatment response and risk of disease recurrence.


Assuntos
Infecções por HIV/epidemiologia , Mycobacterium tuberculosis/isolamento & purificação , Escarro/imunologia , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/imunologia , Adulto , Comorbidade , Feminino , Infecções por HIV/imunologia , Humanos , Masculino , Mycobacterium tuberculosis/imunologia , Prevalência , Sensibilidade e Especificidade , África do Sul/epidemiologia
11.
Biometals ; 29(4): 637-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246555

RESUMO

Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB.


Assuntos
Fármacos Anti-HIV/farmacologia , Antituberculosos/farmacologia , HIV/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Antituberculosos/síntese química , Antituberculosos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Paládio/química , Paládio/farmacologia , Fosfinas/química , Fosfinas/farmacologia , Platina/química , Platina/farmacologia , Relação Estrutura-Atividade
12.
Infect Immun ; 83(2): 544-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404027

RESUMO

Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen.


Assuntos
Nucleotídeos de Guanina/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Pterinas/metabolismo , Tuberculose/microbiologia , Animais , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Nucleotídeos de Guanina/genética , Cobaias , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/microbiologia , Mycobacterium tuberculosis/genética , Nitrato Redutase/genética , Sulfurtransferases/genética
13.
BMC Microbiol ; 15: 22, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25651977

RESUMO

BACKGROUND: Molybdopterin cofactor (MoCo) biosynthesis in Mycobacterium tuberculosis is associated with a multiplicity of genes encoding several enzymes in the pathway, including the molybdopterin (MPT) synthase, a hetero tetramer comprising two MoaD and two MoaE subunits. In addition to moaD1, moaD2, moaE1, moaE2, the M. tuberculosis genome also contains a moaX gene which encodes an MPT-synthase in which the MoaD and MoaE domains are located on a single polypeptide. In this study, we assessed the requirement for post-translational cleavage of MoaX for functionality of this novel, fused MPT synthase and attempted to establish a functional hierarchy for the various MPT-synthase encoding genes in M. tuberculosis. RESULTS: Using a heterologous Mycobacterium smegmatis host and the activity of the MoCo-dependent nitrate reductase, we confirmed that moaD2 and moaE2 from M. tuberculosis together encode a functional MPT synthase. In contrast, moaD1 displayed no functionality in this system, even in the presence of the MoeBR sulphurtransferase, which contains the rhodansese-like domain, predicted to activate MoaD subunits. We demonstrated that cleavage of MoaX into its constituent MoaD and MoaE subunits was required for MPT synthase activity and confirmed that cleavage occurs between the Gly82 and Ser83 residues in MoaX. Further analysis of the Gly81-Gly82 motif confirmed that both of these residues are necessary for catalysis and that the Gly81 was required for recognition/cleavage of MoaX by an as yet unidentified protease. In addition, the MoaE component of MoaX was able to function in conjunction with M. smegmatis MoaD2 suggesting that cleavage of MoaX renders functionally interchangeable subunits. Expression of MoaX in E. coli revealed that incorrect post-translational processing is responsible for the lack of activity of MoaX in this heterologous host. CONCLUSIONS: There is a degree of functional interchangeability between the MPT synthase subunits of M. tuberculosis. In the case of MoaX, post-translational cleavage at the Gly82 residue is required for function.


Assuntos
Mycobacterium tuberculosis/enzimologia , Processamento de Proteína Pós-Traducional , Sulfurtransferases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteólise
15.
Antimicrob Agents Chemother ; 58(5): 2491-503, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24614376

RESUMO

The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed.


Assuntos
Metabolismo Energético/fisiologia , Mycobacterium tuberculosis/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Força Próton-Motriz/fisiologia
16.
BMC Microbiol ; 14: 75, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24661741

RESUMO

BACKGROUND: Mycobacteria comprise diverse species including non-pathogenic, environmental organisms, animal disease agents and human pathogens, notably Mycobacterium tuberculosis. Considering that the mycobacterial cell wall constitutes a significant barrier to drug penetration, the aim of this study was to conduct a comparative genomics analysis of the repertoire of enzymes involved in peptidoglycan (PG) remodelling to determine the potential of exploiting this area of bacterial metabolism for the discovery of new drug targets. RESULTS: We conducted an in silico analysis of 19 mycobacterial species/clinical strains for the presence of genes encoding resuscitation promoting factors (Rpfs), penicillin binding proteins, endopeptidases, L,D-transpeptidases and N-acetylmuramoyl-L-alanine amidases. Our analysis reveals extensive genetic multiplicity, allowing for classification of mycobacterial species into three main categories, primarily based on their rpf gene complement. These include the M. tuberculosis Complex (MTBC), other pathogenic mycobacteria and environmental species. The complement of these genes within the MTBC and other mycobacterial pathogens is highly conserved. In contrast, environmental strains display significant genetic expansion in most of these gene families. Mycobacterium leprae retains more than one functional gene from each enzyme family, underscoring the importance of genetic multiplicity for PG remodelling. Notably, the highest degree of conservation is observed for N-acetylmuramoyl-L-alanine amidases suggesting that these enzymes are essential for growth and survival. CONCLUSION: PG remodelling enzymes in a range of mycobacterial species are associated with extensive genetic multiplicity, suggesting functional diversification within these families of enzymes to allow organisms to adapt.


Assuntos
Variação Genética , Mycobacterium/enzimologia , Mycobacterium/genética , Peptidoglicano/metabolismo , Biologia Computacional , Sequência Conservada , Microbiologia Ambiental , Genoma Bacteriano , Humanos , Mycobacterium/isolamento & purificação , Infecções por Mycobacterium/microbiologia
17.
Crit Rev Microbiol ; 40(1): 18-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23317461

RESUMO

Mycobacterium tuberculosis (Mtb) and other members of the Mtb complex possess an expanded complement of genes for the biosynthesis of molybdenum cofactor (MoCo), a tricyclic pterin molecule that is covalently attached to molybdate. This cofactor allows the redox properties of molybdenum to be harnessed by enzymes in order to catalyze redox reactions in carbon, nitrogen and sulfur metabolism. In this article, we summarize recent advances in elucidating the MoCo biosynthetic pathway in Mtb and highlight the evidence implicating the biosynthesis of this cofactor, as well as the enzymes that depend upon it for activity, in Mtb pathogenesis.


Assuntos
Vias Biossintéticas/genética , Coenzimas/biossíntese , Metaloproteínas/biossíntese , Mycobacterium tuberculosis/metabolismo , Fatores de Virulência/biossíntese , Carbono/metabolismo , Enzimas/metabolismo , Cofatores de Molibdênio , Nitrogênio/metabolismo , Oxirredução , Pteridinas , Enxofre/metabolismo
18.
Elife ; 132024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639995

RESUMO

Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.


Tuberculosis is the leading cause of death from an infectious disease worldwide, partially due to a lack of access to drug treatments in certain countries where the disease is common. The only available tuberculosis vaccine ­ known as the BCG vaccine ­ is useful for preventing cases in young children, but is ineffective in teenagers and adults. So, there is a need to develop new vaccines that offer better, and longer lasting, durable protection in people of all ages. During an infection, our immune system recognizes markers known as PAMPs on the surface of bacteria, viruses or other disease-causing pathogens. The recognition of PAMPs by the immune system enables the body to distinguish foreign invading organisms from its own cells and tissues, thus triggering a response that fights the infection. If the body encounters the infectious agent again in the future, the immune system is able to quickly recognize and eliminate it before it can cause disease. Vaccines protect us by mimicking the appearance of the pathogen to trigger the first immune response without causing the illness. The BCG vaccine contains live bacteria that are closely related to the bacterium responsible for tuberculosis called Mycobacterium tuberculosis. Both M. tuberculosis and the live bacteria used in the BCG vaccine are able to hide an important PAMP, known as the NOD-1 ligand, from the immune system, making it harder for the body to detect them. The NOD-1 ligand forms part of the bacterial cell wall and modifying the BCG bacterium so it cannot disguise this PAMP may lead to a new, more effective vaccine. To investigate this possibility, Shaku et al. used a gene editing approach to develop a modified version of the BCG bacterium which is unable to hide its NOD-1 ligand when treated with a specific drug. Immune cells trained with the modified BCG vaccine were more effective at controlling the growth of M. tuberculosis than macrophages trained using the original vaccine. Furthermore, mice vaccinated with the modified BCG vaccine were better able to limit M. tuberculosis growth in their lungs than mice that had received the original vaccine. These findings offer a new candidate vaccine in the fight against tuberculosis. Further studies will be needed to modify the vaccine for use in humans. More broadly, this work demonstrates that gene editing can be used to expose a specific PAMP present in a live vaccine. This may help develop more effective vaccines for other diseases in the future.


Assuntos
Vacina BCG , Mycobacterium tuberculosis , Peptidoglicano , Tuberculose , Animais , Peptidoglicano/metabolismo , Camundongos , Vacina BCG/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Tuberculose/microbiologia , Humanos , Camundongos Endogâmicos C57BL , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Feminino , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Modelos Animais de Doenças , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
19.
Pathogens ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668273

RESUMO

Growing evidence points to the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens from individuals with active tuberculosis (TB) disease. These bacteria are unable to grow on solid media but can resuscitate in liquid media. Given the epidemiological success of certain clinical genotype families of Mycobacterium tuberculosis, we hypothesize that different strains may have distinct mechanisms of adaptation and tolerance. We used an in vitro carbon starvation model to determine the propensity of strains from lineages 2 and 4 that included the Beijing and LAM families respectively, to generate DCTB. Beijing strains were associated with a greater propensity to produce DCTB compared to LAM strains. Furthermore, LAM strains required culture filtrate (CF) for resuscitation whilst starved Beijing strains were not dependent on CF. Moreover, Beijing strains showed improved resuscitation with cognate CF, suggesting the presence of unique growth stimulatory molecules in this family. Analysis of starved Beijing and LAM strains showed longer cells, which with resuscitation were restored to a shorter length. Cell wall staining with fluorescent D-amino acids identified strain-specific incorporation patterns, indicating that cell surface remodeling during resuscitation was distinct between clinical strains. Collectively, our data demonstrate that M. tuberculosis clinical strains from different genotype lineages have differential propensities to generate DCTB, which may have implications for TB treatment success.

20.
Front Immunol ; 15: 1357360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994357

RESUMO

Background: The impact of previous SARS-CoV-2 infection on the systemic immune response during tuberculosis (TB) disease has not been explored. Methods: An observational, cross-sectional cohort was established to evaluate the systemic immune response in persons with pulmonary tuberculosis with or without previous SARS-CoV-2 infection. Those participants were recruited in an outpatient referral clinic in Rio de Janeiro, Brazil. TB was defined as a positive Xpert-MTB/RIF Ultra and/or a positive culture of Mycobacterium tuberculosis from sputum. Stored plasma was used to perform specific serology to identify previous SARS-CoV-2 infection (TB/Prex-SCoV-2 group) and confirm the non- infection of the tuberculosis group (TB group). Plasmatic cytokine/chemokine/growth factor profiling was performed using Luminex technology. Tuberculosis severity was assessed by clinical and laboratory parameters. Participants from TB group (4.55%) and TB/Prex-SCoV-2 (0.00%) received the complete COVID-19 vaccination. Results: Among 35 participants with pulmonary TB, 22 were classified as TB/Prex-SCoV-2. The parameters associated with TB severity, together with hematologic and biochemical data were similar between the TB and TB/Prex-SCoV-2 groups. Among the signs and symptoms, fever and dyspnea were significantly more frequent in the TB group than the TB/Prex-SCoV-2 group (p < 0,05). A signature based on lower amount of plasma EGF, G-CSF, GM-CSF, IFN-α2, IL-12(p70), IL-13, IL-15, IL-17, IL-1ß, IL-5, IL-7, and TNF-ß was observed in the TB/Prex-SCoV-2 group. In contrast, MIP-1ß was significantly higher in the TB/Prex-SCoV-2 group than the TB group. Conclusion: TB patients previously infected with SARS-CoV-2 had an immunomodulation that was associated with lower plasma concentrations of soluble factors associated with systemic inflammation. This signature was associated with a lower frequency of symptoms such as fever and dyspnea but did not reflect significant differences in TB severity parameters observed at baseline.


Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Tuberculose Pulmonar , Humanos , COVID-19/imunologia , COVID-19/sangue , Masculino , Feminino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/sangue , Citocinas/sangue , Citocinas/imunologia , Brasil/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA