Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 56(6): 1049-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18439628

RESUMO

The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.


Assuntos
Carbono/química , Ecossistema , Fertilizantes/análise , Ureia/química , Ureia/farmacologia , Efeito Estufa , Oceanos e Mares
2.
Ecol Appl ; 16(6): 2091-122, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17205891

RESUMO

Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) 15N tracers, (3) direct N2 quantification, (4) N2:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.


Assuntos
Nitrogênio/análise , Acetileno , Argônio , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Óxidos de Nitrogênio/metabolismo , Solo/análise , Água/análise
3.
Oecologia ; 52(2): 181-186, 1982 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28310505

RESUMO

The demography of shoots of eight populations of a herbaceous perennial exhibiting clonal growth, is presented. The study was done along an elevational gradient, from a more open secondary mixed forest to a denser, more mature stand. Most shoots lived one to three years on the average, but shoots as old as twelve years were found. Large variation in formation and mortality of shoots was observed among plots and years. Yearly trends in the mortality rates of site replicates showed a higher correlation than rates of shoot formation. Although the density of shoots was highest in the drier sites, the turnover of shoots was highly variable and apparently uncorrelated with site location. Age structures revealed a tendency of longer-lived and higher reproductive activities among shoots from more mesic sites. It is hypothesized that environmental rather than density controls are primary causes of the population dynamics observed in this species.

4.
Photochem Photobiol ; 90(3): 522-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24175996

RESUMO

The picoplanktonic cyanobacteria, Synechococcus spp., (Nägeli) are important contributors to global ocean primary production that can be stressed by solar radiation, both in the photosynthetically active (PAR) and ultraviolet (UV) range. We studied the responses of PSII quantum yield (active fluorescence), carbon fixation ((14)C assimilation) and oxygen evolution (membrane inlet mass spectrometry) in Synechococcus WH8102 under moderate UV and PAR. PSII quantum yield decreased during exposure to moderate UV and UV+PAR, with response to the latter being faster (6.4 versus 2.8 min, respectively). Repair processes were also faster when UV+PAR exposure was followed by moderate PAR (1.68 min response time) than when UV was followed by very low PAR (10.5 min response time). For the UV+PAR treatment, the initial decrease in quantum yield was followed by a 50% increase ("rebound") after 7 min exposure, showing an apparent photoprotection induction. While oxygen uptake increased with PAR, it did not change under UV, suggesting that this oxygen-dependent mechanism of photoprotection, which may be acting as an electron sink, is not an important strategy against UV. We used propyl gallate, an antioxidant, to test for plastid terminal oxidase (ptox) or ptox-like enzymes activity, but it caused nonspecific and toxic effects on Synechococcus WH8102.


Assuntos
Fotossíntese/efeitos da radiação , Luz Solar , Synechococcus/efeitos da radiação , Fluorescência , Cinética , Oxigênio/metabolismo , Synechococcus/metabolismo , Synechococcus/fisiologia
5.
Chemosphere ; 93(9): 2124-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23978673

RESUMO

Anaerobic ammonium oxidation (anammox) has been recently recognized as an important pathway for the removal of fixed nitrogen (N) from aquatic systems. However, the functions of anammox in freshwater river systems remain uncertain. In this study, we evaluated the occurrence of anammox activity in two rivers in the Taihu Lake region in China during a seasonal survey. Homogenized sediments were incubated with (15)N-labeled NO3(-) and NH4(+) amendments to determine the potential importance of the anammox process relative to canonical denitrification. Production of (29)N2 and (30)N2 in slurries was determined using membrane inlet mass spectrometry. Potential anammox rates in the two river sediments ranged from 0.11±0.07 to 6.79±1.28 µmol N m(-2) h(-1) and the remove of N by anammox accounted for 0.8±0.00% to 10.7±0.03% of total N2 production. Potential anammox rates varied spatially and temporally in the two rivers, with the highest and lowest mean anammox rates appearing during summer and early autumn and during winter, respectively. The variation of the percentage of anammox to total N2 production displayed the same trend with potential anammox rates. Water temperature and NO3(-) content in sediments were the main factors affecting anammox activity. Anammox bacteria were detected in sediment samples using barcode pyrosequencing. The 16S rRNA anammox gene sequences in the river sediments were affiliated with Candidatus Kuenenia, Candidatus Jettenia, and Candidatus Scalindua, among which C. Kuenenia dominated the anammox bacterial communities. Our results confirmed the presence of anammox bacteria but their role is relatively small in removing fixed N from freshwater river systems.


Assuntos
Compostos de Amônio/análise , Sedimentos Geológicos/química , Lagos/química , Poluentes Químicos da Água/análise , Compostos de Amônio/metabolismo , Anaerobiose , Bactérias/metabolismo , China , Lagos/microbiologia , Oxirredução , Rios/química , Rios/microbiologia , Estações do Ano , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA