Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33154613

RESUMO

The atomic layer thin geometry and semi-metallic band diagram of graphene can be utilized for significantly improving the performance matrix of integrated photonic devices. Its semiconductor-like behavior of Fermi-level tunability allows graphene to serve as an active layer for electro-optic modulation. As a low loss metal layer, graphene can be placed much closer to active layer for low voltage operation. In this work, we investigate hybrid device architectures utilizing semiconductor and metallic properties of the graphene for ultrafast and energy efficient electro-optic phase modulators on semiconductor and dielectric platforms. (1) Directly contacted graphene-silicon heterojunctions. Without oxide layer, the carrier density of graphene can be modulated by the directly contact to silicon layer, while silicon intrinsic region stays mostly depleted. With doped silicon as electrodes, carrier can be quickly injected and depleted from the active region in graphene. The ultrafast carrier transit time and small RC constant promise ultrafast modulation speed (3dB bandwidth of 67 GHz) with an estimated Vπ·L of 1.19 V·mm. (2) Graphene integrated lithium niobite modulator. As a transparent electrode, graphene can be placed close to integrated lithium niobate waveguide for improving coupling coefficient between optical mode profile and electric field with minimal additional loss (4.6 dB/cm). Numerical simulation indicates 2.5× improvement of electro-optic field overlap coefficient, with estimated V π of 0.2 V.

2.
Nat Commun ; 10(1): 3547, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391468

RESUMO

Metasurfaces can be programmed for a spatial transformation of the wavefront, thus allowing parallel optical signal processing on-chip within an ultracompact dimension. On-chip metasurfaces have been implemented with two-dimensional periodic structures, however, their inherent scattering loss limits their large-scale implementation. The scattering can be minimized in single layer high-contrast transmitarray (HCTA) metasurface. Here we demonstrate a one-dimensional HCTA based lens defined on a standard silicon-on-insulator substrate, with its high transmission (<1 dB loss) maintained over a 200 nm bandwidth. Three layers of the HCTAs are cascaded for demonstrating meta-system functionalities of Fourier transformation and differentiation. The meta-system design holds potential for realizing on-chip transformation optics, mathematical operations and spectrometers, with applications in areas of imaging, sensing and quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA