Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 603(7902): 654-660, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296861

RESUMO

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Cognição , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Fenótipo , Reprodutibilidade dos Testes
2.
Neuroimage ; 285: 120471, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007188

RESUMO

Behavioral genetic analyses have not demonstrated robust, unique, genetic correlates of hippocampal subregion volume. Genetic differentiation of hippocampal longitudinal axis subregion volume has not yet been investigated in population-based samples, although this has been demonstrated in rodent and post-mortem human tissue work. The following study is the first population-based investigation of genetic factors that contribute to gray matter volume along the hippocampal longitudinal axis. Twin-based biometric analyses demonstrated that longitudinal axis subregions are associated with significant, unique, genetic variance, and that longitudinal axis subregions are also associated with significant shared, hippocampus-general, genetic factors. Our study's findings suggest that genetic differences in hippocampal longitudinal axis structure can be detected in individual differences in gray matter volume in population-level research designs.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Adulto , Criança , Humanos , Hipocampo/diagnóstico por imagem , Córtex Cerebral , Substância Cinzenta/diagnóstico por imagem , Gêmeos/genética
3.
Cereb Cortex ; 33(11): 6928-6942, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36724055

RESUMO

The human brain is active at rest, and spontaneous fluctuations in functional MRI BOLD signals reveal an intrinsic functional architecture. During childhood and adolescence, functional networks undergo varying patterns of maturation, and measures of functional connectivity within and between networks differ as a function of age. However, many aspects of these developmental patterns (e.g. trajectory shape and directionality) remain unresolved. In the present study, we characterised age-related differences in within- and between-network resting-state functional connectivity (rsFC) and integration (i.e. participation coefficient, PC) in a large cross-sectional sample of children and adolescents (n = 628) aged 8-21 years from the Lifespan Human Connectome Project in Development. We found evidence for both linear and non-linear differences in cortical, subcortical, and cerebellar rsFC, as well as integration, that varied by age. Additionally, we found that sex moderated the relationship between age and putamen integration where males displayed significant age-related increases in putamen PC compared with females. Taken together, these results provide evidence for complex, non-linear differences in some brain systems during development.


Assuntos
Encéfalo , Conectoma , Masculino , Criança , Feminino , Humanos , Adolescente , Estudos Transversais , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Longevidade , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
4.
Behav Genet ; 53(3): 279-291, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36720770

RESUMO

Studies demonstrate that individuals with diagnoses for Major Depressive Disorder (MDD), Post-traumatic Stress Disorder (PTSD), and Schizophrenia (SCZ) may exhibit smaller hippocampal gray matter relative to otherwise healthy controls, although the effect sizes vary in each disorder. Existing work suggests that hippocampal abnormalities in each disorder may be attributable to genetic liability and/or environmental variables. The following study uses baseline data from the Adolescent Brain and Cognitive Development[Formula: see text] Study (ABCD Study[Formula: see text]) to address three open questions regarding the relationship between genetic risk for each disorder and hippocampal volume reductions: (a) whether polygenic risk scores (PGRS) for MDD, PTSD, and SCZ are related to hippocampal volume; (b) whether PGRS for MDD, PTSD, and SCZ are differentially related to specific hippocampal subregions along the longitudinal axis; and (c) whether the association between PGRS for MDD, PTSD, and SCZ and hippocampal volume is moderated by sex and/or environmental adversity. In short, we did not find associations between PGRS for MDD, PTSD, and SCZ to be significantly related to any hippocampal subregion volumes. Furthermore, neither sex nor enviornmental adversity significantly moderated these associations. Our study provides an important null finding on the relationship genetic risk for MDD, PTSD, and SCZ to measures of hippocampal volume.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Transtornos de Estresse Pós-Traumáticos , Adolescente , Humanos , Criança , Transtorno Depressivo Maior/genética , Esquizofrenia/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia , Depressão , Hipocampo , Imageamento por Ressonância Magnética
6.
Depress Anxiety ; 39(12): 881-890, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36321433

RESUMO

INTRODUCTION: Compared to research on adults with depression, relatively little work has examined white matter microstructure differences in depression arising earlier in life. Here we tested hypotheses about disruptions to white matter structure in adolescents with current and past depression, with an a priori focus on the cingulum bundles, uncinate fasciculi, corpus collosum, and superior longitudinal fasciculus. METHODS: One hundred thirty-one children from the Preschool Depression Study were assessed using a Human Connectome Project style diffusion imaging sequence which was processed with HCP pipelines and TRACULA to generate estimates of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). RESULTS: We found that reduced FA, reduced AD, and increased RD in the dorsal cingulum bundle were associated with a lifetime diagnosis of major depression and greater cumulative and current depression severity. Reduced FA, reduced AD, and increased RD in the ventral cingulum were associated with greater cumulative depression severity. CONCLUSION: These findings support the emergence of white matter differences detected in adolescence associated with earlier life and concurrent depression. They also highlight the importance of connections of the cingulate to other brain regions in association with depression, potentially relevant to understanding emotion dysregulation and functional connectivity differences in depression.


Assuntos
Substância Branca , Adulto , Criança , Adolescente , Humanos , Pré-Escolar , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Depressão/diagnóstico por imagem , Rede Nervosa , Encéfalo , Anisotropia
7.
Cogn Affect Behav Neurosci ; 21(1): 254-264, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33683660

RESUMO

The amygdala has been implicated in processing threat and learning fear. However, the amygdala also responds to motivationally relevant stimuli even in the absence of explicit emotional content. We investigated the relationship among amygdala activation, cognitive and emotional factors, and fMRI task data in participants from the Young Adult Human Connectome Project. We expected to see variation in amygdala activation that corresponded with variation in traits that could affect the salience of task related stimuli (i.e., internalizing symptoms and fearful faces). We found no relationship between amygdala activation during face viewing and emotion related traits. However, amygdala activation under working memory load was negatively correlated with fluid intelligence and reading level. There also was a negative relationship between task performance and activation in the amygdala. The observed relationship suggests that the role of amygdala is not limited to the processing of emotional content of incoming information but is instead related to salience, which can be influenced by individual differences.


Assuntos
Individualidade , Imageamento por Ressonância Magnética , Tonsila do Cerebelo/diagnóstico por imagem , Cognição , Medo , Humanos , Adulto Jovem
8.
Cereb Cortex ; 30(4): 2489-2505, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31808790

RESUMO

The prefrontal cortex (PFC) comprises distinct regions and networks that vary in their trajectories across development. Further understanding these diverging trajectories may elucidate the neural mechanisms by which distinct PFC regions contribute to cognitive maturity. In particular, it remains unclear whether PFC regions of distinct network affiliations differ in topology and their relationship to cognition. We examined 615 individuals (8-21 years) to characterize age-related effects in participation coefficient of 28 PFC regions of distinct networks, evaluating connectivity profiles of each region to understand patterns influencing topological maturity. Findings revealed that PFC regions of attention, frontoparietal, and default mode networks (DMN) displayed varying rates of decline in participation coefficient with age, characterized by stronger connectivity with each PFC's respective network; suggesting that PFC regions largely aid network segregation. Conversely, PFC regions of the cinguloopercular/salience network increased in participation coefficient with age, marked by stronger between-network connections, suggesting that some PFC regions feature a distinctive ability to facilitate network integration. PFC topology of the DMN, in particular, predicted improvements in global cognition, including motor speed and higher order abilities. Together, these findings elucidate systematic differences in topology across PFC regions of different network affiliation, representing important neural signatures of typical brain development.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Adolescente , Criança , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Adulto Jovem
9.
J Neuropsychiatry Clin Neurosci ; 31(3): 254-263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945588

RESUMO

OBJECTIVE: The recent advent of individualized resting-state network mapping (RSNM) has revealed substantial interindividual variability in anatomical localization of brain networks identified by using resting-state functional MRI (rsfMRI). RSNM enables personalized targeting of focal neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS). rTMS is believed to exert antidepressant efficacy by modulating connectivity between the stimulation site, the default mode network (DMN), and the subgenual anterior cingulate cortex (sgACC). Personalized rTMS may be particularly useful after repetitive traumatic brain injury (TBI), which is associated with neurodegenerative tauopathy in medial temporal limbic structures. These degenerative changes are believed to be related to treatment-resistant neurobehavioral disturbances observed in many retired athletes. METHODS: The authors describe a case in which RSNM was successfully used to target rTMS to treat these neuropsychiatric disturbances in a retired NFL defensive lineman whose symptoms were not responsive to conventional treatments. RSNM was used to identify left-right dorsolateral prefrontal rTMS targets with maximal difference between dorsal attention network and DMN correlations. These targets were spatially distinct from those identified by prior methods. Twenty sessions of left-sided excitatory and right-sided inhibitory rTMS were administered at these targets. RESULTS: Treatment led to improvement in Montgomery-Åsberg Depression Rating Scale (72%), cognitive testing, and headache scales scores. Compared with healthy individuals and subjects with TBI-associated depression, baseline rsfMRI revealed substantially elevated DMN connectivity with the medial temporal lobe (MTL). Serial rsfMRI scans revealed gradual improvement in MTL-DMN connectivity and stimulation site connectivity with sgACC. CONCLUSIONS: These results highlight the possibility of individualized neuromodulation and biomarker-based monitoring for neuropsychiatric sequelae of repetitive TBI.


Assuntos
Atletas/psicologia , Lesões Encefálicas Traumáticas/terapia , Conectoma , Depressão/terapia , Estimulação Magnética Transcraniana/métodos , Adulto , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Depressão/complicações , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiologia
10.
Neuroimage ; 183: 456-468, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30142446

RESUMO

Recent technological and analytical progress in brain imaging has enabled the examination of brain organization and connectivity at unprecedented levels of detail. The Human Connectome Project in Development (HCP-D) is exploiting these tools to chart developmental changes in brain connectivity. When complete, the HCP-D will comprise approximately ∼1750 open access datasets from 1300 + healthy human participants, ages 5-21 years, acquired at four sites across the USA. The participants are from diverse geographical, ethnic, and socioeconomic backgrounds. While most participants are tested once, others take part in a three-wave longitudinal component focused on the pubertal period (ages 9-17 years). Brain imaging sessions are acquired on a 3 T Siemens Prisma platform and include structural, functional (resting state and task-based), diffusion, and perfusion imaging, physiological monitoring, and a battery of cognitive tasks and self-reports. For minors, parents additionally complete a battery of instruments to characterize cognitive and emotional development, and environmental variables relevant to development. Participants provide biological samples of blood, saliva, and hair, enabling assays of pubertal hormones, health markers, and banked DNA samples. This paper outlines the overarching aims of the project, the approach taken to acquire maximally informative data while minimizing participant burden, preliminary analyses, and discussion of the intended uses and limitations of the dataset.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Protocolos Clínicos , Conectoma/métodos , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Adulto Jovem
11.
Neuroimage ; 183: 972-984, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30261308

RESUMO

The Human Connectome Projects in Development (HCP-D) and Aging (HCP-A) are two large-scale brain imaging studies that will extend the recently completed HCP Young-Adult (HCP-YA) project to nearly the full lifespan, collecting structural, resting-state fMRI, task-fMRI, diffusion, and perfusion MRI in participants from 5 to 100+ years of age. HCP-D is enrolling 1300+ healthy children, adolescents, and young adults (ages 5-21), and HCP-A is enrolling 1200+ healthy adults (ages 36-100+), with each study collecting longitudinal data in a subset of individuals at particular age ranges. The imaging protocols of the HCP-D and HCP-A studies are very similar, differing primarily in the selection of different task-fMRI paradigms. We strove to harmonize the imaging protocol to the greatest extent feasible with the completed HCP-YA (1200+ participants, aged 22-35), but some imaging-related changes were motivated or necessitated by hardware changes, the need to reduce the total amount of scanning per participant, and/or the additional challenges of working with young and elderly populations. Here, we provide an overview of the common HCP-D/A imaging protocol including data and rationales for protocol decisions and changes relative to HCP-YA. The result will be a large, rich, multi-modal, and freely available set of consistently acquired data for use by the scientific community to investigate and define normative developmental and aging related changes in the healthy human brain.


Assuntos
Envelhecimento , Encéfalo , Conectoma/métodos , Longevidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Cereb Cortex ; 27(3): 1709-1720, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062515

RESUMO

Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development.


Assuntos
Atenção/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Testes Neuropsicológicos , Psicologia da Criança
13.
Neuroimage ; 163: 41-54, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28867339

RESUMO

Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions hypothesized to be modulated by cognitive control signaling, such as visual cortex. Taken together, these results illustrate the potential utility of multi-modal analyses in identifying the neural correlates of cognitive control across different indicators of brain structure and function.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Conectoma/métodos , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagem Multimodal , Adulto Jovem
14.
J Immunol ; 195(5): 2374-82, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26216892

RESUMO

Humoral responses to nonproteinaceous Ags (i.e., T cell independent [TI]) are a key component of the early response to bacterial and viral infection and a critical driver of systemic autoimmunity. However, mechanisms that regulate TI humoral immunity are poorly defined. In this study, we report that B cell-intrinsic induction of the tryptophan-catabolizing enzyme IDO1 is a key mechanism limiting TI Ab responses. When Ido1(-/-) mice were immunized with TI Ags, there was a significant increase in Ab titers and formation of extrafollicular Ab-secreting cells compared with controls. This effect was specific to TI Ags, as Ido1 disruption did not affect Ig production after immunization with protein Ags. The effect of IDO1 abrogation was confined to the B cell compartment, as adoptive transfer of Ido1(-/-) B cells to B cell-deficient mice was sufficient to replicate increased TI responses observed in Ido1(-/-) mice. Moreover, in vitro activation with TLR ligands or BCR crosslinking rapidly induced Ido1 expression and activity in purified B cells, and Ido1(-/-) B cells displayed enhanced proliferation and cell survival associated with increased Ig and cytokine production compared with wild-type B cells. Thus, our results demonstrate a novel, B cell-intrinsic, role for IDO1 as a regulator of humoral immunity that has implications for both vaccine design and prevention of autoimmunity.


Assuntos
Antígenos T-Independentes/imunologia , Linfócitos B/imunologia , Imunidade Humoral/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Transferência Adotiva , Animais , Formação de Anticorpos/imunologia , Apoptose/genética , Apoptose/imunologia , Linfócitos B/metabolismo , Western Blotting , Proliferação de Células/genética , Feminino , Citometria de Fluxo , Imunidade Humoral/genética , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 34(6): 1231-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24700124

RESUMO

OBJECTIVE: Vascular cells, particularly endothelial cells, adopt aerobic glycolysis to generate energy to support cellular functions. The effect of endothelial glycolysis on angiogenesis remains unclear. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, isoform 3 (PFKFB3) is a critical enzyme for endothelial glycolysis. By blocking or deleting PFKFB3 in endothelial cells, we investigated the influence of endothelial glycolysis on angiogenesis both in vitro and in vivo. APPROACH AND RESULTS: Under hypoxic conditions or after treatment with angiogenic factors, endothelial PFKFB3 was upregulated both in vitro and in vivo. The knockdown or overexpression of PFKFB3 suppressed or accelerated endothelial proliferation and migration in vitro, respectively. Neonatal mice from a model of oxygen-induced retinopathy showed suppressed neovascular growth in the retina when endothelial PFKFB3 was genetically deleted or when the mice were treated with a PFKFB3 inhibitor. In addition, tumors implanted in mice deficient in endothelial PFKFB3 grew more slowly and were provided with less blood flow. A lower level of phosphorylated protein kinase B was observed in PFKFB3-knockdown endothelial cells, which was accompanied by a decrease in intracellular lactate. The addition of lactate to PFKFB3-knockdown cells rescued the suppression of endothelial proliferation and migration. CONCLUSIONS: The blockade or deletion of endothelial PFKFB3 decreases angiogenesis both in vitro and in vivo. Thus, PFKFB3 is a promising target for the reduction of endothelial glycolysis and its related pathological angiogenesis.


Assuntos
Células Endoteliais/fisiologia , Neovascularização Patológica/etiologia , Fosfofrutoquinase-2/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Glicólise , Humanos , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Sci Transl Med ; 15(703): eabn0441, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406139

RESUMO

Depression associated with traumatic brain injury (TBI) is believed to be clinically distinct from primary major depressive disorder (MDD) and may be less responsive to conventional treatments. Brain connectivity differences between the dorsal attention network (DAN), default mode network (DMN), and subgenual cingulate have been implicated in TBI and MDD. To characterize these distinctions, we applied precision functional mapping of brain network connectivity to resting-state functional magnetic resonance imaging data from five published patient cohorts, four discovery cohorts (n = 93), and one replication cohort (n = 180). We identified a distinct brain connectivity profile in TBI-associated depression that was independent of TBI, MDD, posttraumatic stress disorder (PTSD), depression severity, and cohort. TBI-associated depression was independently associated with decreased DAN-subgenual cingulate connectivity, increased DAN-DMN connectivity, and the combined effect of both. This effect was stronger when using precision functional mapping relative to group-level network maps. Our results support the possibility of a physiologically distinct "TBI affective syndrome," which may benefit from individualized neuromodulation approaches to target its distinct neural circuitry.


Assuntos
Lesões Encefálicas Traumáticas , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/complicações , Mapeamento Encefálico/métodos , Depressão/complicações , Depressão/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vias Neurais
18.
Dev Neurobiol ; 83(1-2): 28-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314461

RESUMO

Adverse experiences and family income in childhood have been associated with altered brain development. While there is a large body of research examining these associations, it has primarily used cross-sectional data sources and studied adverse experiences and family income in isolation. However, it is possible that low family income and adverse experiences represent dissociable and potentially interacting profiles of risk. To address this gap in the literature, we examined brain structure as a function of adverse experiences in childhood and family income in 158 youths with up to five waves of MRI data. Specifically, we assessed the interactive effect of these two risk factors on six regions of interest: hippocampus, putamen, amygdala, nucleus accumbens, caudate, and thalamus. Adverse experiences and family income interacted to predict putamen volume (B = 0.086, p = 0.011) but only in participants with family income one standard deviation below the mean (slope estimate = -0.11, p = 0.03). These results suggest that adverse experiences in childhood result in distinct patterns of brain development across the socioeconomic gradient. Given previous findings implicating the role of the putamen in psychopathology-related behaviors, these results emphasize the importance of considering life events and socioeconomic context when evaluating markers of risk. Future research should include interactive effects of environmental exposures and family income to better characterize risk for psychopathology in diverse samples.


Assuntos
Encéfalo , Putamen , Adolescente , Humanos , Putamen/diagnóstico por imagem , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pobreza , Núcleo Accumbens
19.
Sci Rep ; 13(1): 4052, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906616

RESUMO

At the group level, antidepressant efficacy of rTMS targets is inversely related to their normative connectivity with subgenual anterior cingulate cortex (sgACC). Individualized connectivity may yield better targets, particularly in patients with neuropsychiatric disorders who may have aberrant connectivity. However, sgACC connectivity shows poor test-retest reliability at the individual level. Individualized resting-state network mapping (RSNM) can reliably map inter-individual variability in brain network organization. Thus, we sought to identify individualized RSNM-based rTMS targets that reliably target the sgACC connectivity profile. We used RSNM to identify network-based rTMS targets in 10 healthy controls and 13 individuals with traumatic brain injury-associated depression (TBI-D). These "RSNM targets" were compared with consensus structural targets and targets based on individualized anti-correlation with a group-mean-derived sgACC region ("sgACC-derived targets"). The TBI-D cohort was also randomized to receive active (n = 9) or sham (n = 4) rTMS to RSNM targets with 20 daily sessions of sequential high-frequency left-sided stimulation and low-frequency right-sided stimulation. We found that the group-mean sgACC connectivity profile was reliably estimated by individualized correlation with default mode network (DMN) and anti-correlation with dorsal attention network (DAN). Individualized RSNM targets were thus identified based on DAN anti-correlation and DMN correlation. These RSNM targets showed greater test-retest reliability than sgACC-derived targets. Counterintuitively, anti-correlation with the group-mean sgACC connectivity profile was also stronger and more reliable for RSNM-derived targets than for sgACC-derived targets. Improvement in depression after RSNM-targeted rTMS was predicted by target anti-correlation with the portions of sgACC. Active treatment also led to increased connectivity within and between the stimulation sites, the sgACC, and the DMN. Overall, these results suggest that RSNM may enable reliable individualized rTMS targeting, although further research is needed to determine whether this personalized approach can improve clinical outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Depressão , Humanos , Depressão/terapia , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana/métodos , Lesões Encefálicas Traumáticas/complicações , Mapeamento Encefálico
20.
Cell Rep ; 42(12): 113266, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979172

RESUMO

Chromosome instability (CIN) contributes to resistance to therapies and tumor evolution. Although natural killer (NK) cells can eliminate cells with complex karyotypes, high-CIN human tumors have an immunosuppressive phenotype. To understand which CIN-associated molecular features alter immune recognition during tumor evolution, we overexpress Polo-like kinase 1 (Plk1) in a Her2+ breast cancer model. These high-CIN tumors activate a senescence-associated secretory phenotype (SASP), upregulate PD-L1 and CD206, and induce non-cell-autonomous nuclear factor κB (NF-κß) signaling, facilitating immune evasion. Single-cell RNA sequencing from pre-neoplastic mammary glands unveiled the presence of Arg1+ macrophages, NK cells with reduced effector functions, and increased resting regulatory T cell infiltration. We further show that high PLK1-expressing human breast tumors display gene expression patterns associated with SASP, NF-κß signaling, and immune suppression. These findings underscore the need to understand the immune landscape in CIN tumors to identify more effective therapies, potentially combining immune checkpoint or NF-κß inhibitors with current treatments.


Assuntos
Neoplasias da Mama , Instabilidade Cromossômica , Tolerância Imunológica , Quinase 1 Polo-Like , Evasão Tumoral , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Humanos , Animais , Camundongos , Quinase 1 Polo-Like/genética , Quinase 1 Polo-Like/metabolismo , Linhagem Celular Tumoral , Receptor ErbB-2/genética , NF-kappa B/metabolismo , Antígeno B7-H1/metabolismo , Receptor de Manose/metabolismo , Células Matadoras Naturais/imunologia , Xenoenxertos , Células MCF-7 , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA