Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochem Biophys Res Commun ; 493(1): 783-787, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28847728

RESUMO

Small-cell lung carcinoma (SCLC) has a dismal prognosis in part because of multidrug resistance (MDR). Epibrassinolide (EB) is a steroid hormone in plants, with many physiological effects. It acts via a membrane receptor and GSK3 pathway, resulting in stabilization of a transcription factor. The parallels to the Wnt signaling pathway, which is activated in SCLC and results in increased ß-catenin, prompted investigations of the effects of EB on drug-resistant (VPA17) and drug-sensitive (H69) SCLC cells. EB was cytotoxic to both cell lines (IC50 = 2 µM), indicating a lack of cross-resistance in the VPA17 cell line. EB was pro-apoptotic after 24 h as measured by ELISA of BUdR-labeled DNA fragments and caspase-3 specific activity (2.5 enzyme units/mg protein vs. 0.01 units/mg protein for untreated controls). Matrigel assays showed that EB reduced the SCLC cell invasion phenotype by 80%. Pre-incubation of VPA17 cells in 1 µM EB for 96 h reversed resistance to etoposide (IC50 = 6.0 µM, reduced to 1.8 µM with EB) and doxorubicin (IC50 = 0.37 µM, reduced to 0.09 µM). Synergism between EB and chemotherapy drugs was investigated by exposure of VPA17 cells to 1:1 ratios at the respective IC50 values, with serial dilutions at 0.25 to 2.0 × IC50 and determination of the combination index (CI). EB and etoposide showed synergism (CI = 0.80 at ED50); EB and doxorubicin also showed synergism (CI = 0.65 at ED50). Incubation of SCLC cells in EB led to a time- and dose dependent reduction of ß-catenin (maximum 80% reduction). Gene expression analyses of SCLC cells showed EB incubation resulted in significant reduction in expression of ß-catenin-dependent genes that are anti-apoptotic (e.g., c-Jun, survivin), cell division-related (e.g., CCND1 cyclin, sox9), and metastasis-related (e.g., MMP7, uPAR). WIKI4, a known inhibitor of Wnt signaling, was cytotoxic to SCLC cells (IC50 = 0.02 µM). Synergism between EB and WIKI4 was determined by the CI method and showed antagonism (CI = 1.09 at ED50), suggesting that EB and WIKI4 act on the same pathway. Taken together, these data indicate that EB, a natural product with widespread occurrence in plants, is pharmacologically active in both drug-sensitive and drug-resistant SCLC cells and acts through the Wnt signaling pathway.


Assuntos
Brassinosteroides/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Reguladores de Crescimento de Plantas , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Esteroides Heterocíclicos/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Fitosteróis/administração & dosagem , Resultado do Tratamento
2.
Mol Cancer ; 13: 192, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128420

RESUMO

BACKGROUND: Darpp-32 and t-Darpp are expressed in several forms of breast cancer. Both are transcribed from the gene PPP1R1B via alternative promoters. In humans, Darpp-32 is expressed in both normal and malignant breast tissue, whereas t-Darpp has only been found in malignant breast tissue. The exact biological functions of these proteins in the breast are not known. Although Darpp-32 is a well known regulator of neurotransmission, its role in other tissues and in cancer is less well understood. t-Darpp is known to increase cellular growth, inhibit apoptosis and contribute to acquired drug resistance. The use of transgenic mouse mammary tumor models to study Darpp-32 and t-Darpp in breast cancer in vivo has been limited by a lack of knowledge regarding t-Darpp expression in mice, in both normal and malignant tissue. METHODS: We used RT-PCR and Western analysis to investigate Darpp-32 and t-Darpp levels in normal and malignant mouse mammary tissue. To determine if Darpp-32 and t-Darpp play a direct role in mammary tumor development, Ppp1r1b gene knockout mice and wild-type mice were crossed with a mouse mammary tumor model. Tumor growth and metastasis were examined. Differences between groups were determined by the two-tailed Student's t-test. RESULTS: We found that Darpp-32 was expressed in normal mouse mammary tissue and in some breast tumors, whereas t-Darpp was found exclusively in tumors, with t-Darpp usually expressed at equal or higher levels than Darpp-32. Ppp1r1b knockout in MMTV-PyMT transgenic tumor mice resulted in a decrease in tumor growth. CONCLUSIONS: The shift in expression from Darpp-32 to t-Darpp during mouse mammary tumorigenesis is reminiscent of the expression patterns observed in humans and is consistent with a role for t-Darpp in promoting cell growth and Darpp-32 in inhibiting cell growth. Decreased tumor growth in Ppp1r1b knockout mice also suggests that t-Darpp plays a direct role, predominant to Darpp-32, in mammary tumor development. These results indicate that transgenic mouse mammary tumor models might be valuable tools for future investigation of Darpp-32 and t-Darpp in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Neoplasias Pulmonares/patologia , Glândulas Mamárias Animais/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular , Feminino , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Breast Cancer Res Treat ; 140(2): 273-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23881522

RESUMO

One of the major obstacles in human epidermal growth factor receptor 2 (HER2)-specific trastuzumab antibody immunotherapy of HER2-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Using mouse models, we previously demonstrated that ovalbumin (OVA)-specific dendritic cell (DC)-released exosome (EXOOVA)-targeted CD4(+) T cell-based (OVA-TEXO) vaccine stimulates efficient cytotoxic T lymphocyte (CTL) responses via exosomal peptide/major histocompatibility complex (pMHC)-I, exosomal CD80 and endogenous IL-2 signaling; and long-term CTL memory by means of via endogenous CD40L signaling. In this study, using two-photon microscopy, we provide the first visual evidence on targeting OVA-TEXO to cognate CD8(+) T cells in vivo via exosomal pMHC-I complex. We prepared HER2/neu-specific Neu-TEXO and HER2-TEXO vaccines using adenoviral vector (AdVneu and AdVHER2)-transfected DC (DCneu and DCHER2)-released EXOs (EXOneu and EXOHER2), and assessed their stimulatory effects on HER2/neu-specific CTL responses and antitumor immunity. We demonstrate that Neu-TEXO vaccine is capable of stimulating efficient neu-specific CTL responses, leading to protective immunity against neu-expressing Tg1-1 breast cancer in all 6/6 transgenic (Tg) FVBneuN mice with neu-specific self-immune tolerance. We also demonstrate that HER2-TEXO vaccine is capable of inducing HER2-specific CTL responses and protective immunity against transgene HLA-A2(+)HER2(+) BL6-10A2/HER2 B16 melanoma in 2/8 double Tg HLA-A2/HER2 mice with HER2-specific self-immune tolerance. The remaining 6/8 mice had significantly prolonged survival. Furthermore, we demonstrate that HER2-TEXO vaccine stimulates responses of CD8(+) T cells capable of not only inducing killing activity to HLA-A2(+)HER2(+) BL6-10A2/HER2 melanoma and trastuzumab-resistant BT474A2 breast cancer cells in vitro but also eradicating 6-day palpable HER2(+) BT474A2 breast cancer (3-4 mm in diameter) in athymic nude mice. Therefore, the novel T cell-based HER2-TEXO vaccine may provide a new therapeutic alternative for women with HER2(+) breast cancer, especially for trastuzumab-resistant HER2(+) breast cancer patients.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/imunologia , Vacinas Anticâncer/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/imunologia , Antígeno HLA-A2/imunologia , Linfócitos T Citotóxicos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/imunologia , Feminino , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Receptor ErbB-2/imunologia , Linfócitos T Citotóxicos/imunologia , Trastuzumab
4.
J Pharmacol Exp Ther ; 345(3): 438-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532932

RESUMO

The MDR1 gene encodes P-glycoprotein, a transmembrane drug efflux transporter that confers multidrug resistance in cancer cells and affects drug pharmacokinetics by virtue of its expression in the liver, kidney, and colon. Nuclear receptors human steroid and xenobiotic receptor (SXR) and constitutive androstane receptor (CAR) are possible master regulators of xenobiotic-inducible MDR1 expression in drug processing organs, but the mechanism of MDR1 regulation has yet to be directly demonstrated in vivo. Moreover, it has previously been impossible to determine the sustained or cumulative effect of repeated doses of xenobiotics on in vivo MDR1 expression. We previously reported a mouse model containing firefly luciferase (fLUC) knocked into the mdr1a genomic locus, allowing noninvasive bioimaging of intestinal mdr1a gene expression in live animals. In the current study, we crossed mdr1a.fLUC mice into the pxr knockout (pxr(-/-)) genetic background and injected mice with pregnenolone-16α-carbonitrile (PCN), a strong mouse pregnane X receptor (PXR) ligand, and two therapeutically relevant taxanes, paclitaxel and docetaxel. All three agents induced mdr1a.fLUC expression (bioluminescence), but only PCN and docetaxel appeared to act primarily via PXR. Luminescence returned to baseline by 24-48 hours after drug injection and was reinducible over two additional rounds of drug dosing in pxr(+/+) mice. TCPOBOP, a CAR ligand, modestly induced mdr1a.fLUC in pxr(+/+) and pxr(-/-) strains, consistent with CAR's minor role in mdr1a regulation. Collectively, these results demonstrate that the mdr1a.fLUC bioimaging model can capture changes in mdr1 gene expression under conditions of repeated xenobiotic treatment in vivo and that it can be used to probe the mechanism of gene regulation in response to different xenobiotic agents.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Genes Reporter/genética , Luciferases/genética , Receptores de Esteroides/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Receptor Constitutivo de Androstano , Docetaxel , Ácidos Graxos Monoinsaturados/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Mucosa Intestinal/metabolismo , Ligantes , Proteínas Luminescentes/biossíntese , Camundongos , Camundongos Knockout , Paclitaxel/farmacologia , Receptor de Pregnano X , Piridinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/efeitos dos fármacos , Taxoides/farmacologia , Xenobióticos/farmacologia
5.
Proc Natl Acad Sci U S A ; 106(13): 5394-9, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19282474

RESUMO

Multidrug resistance continues to be a major impediment to successful chemotherapy in cancer patients. One cause of multidrug resistance is enhanced expression of the mdr1 gene, but the precise factors and physiological conditions controlling mdr1 expression are not entirely known. To gain a better understanding of mdr1 transcriptional regulation, we created a unique mouse model that allows noninvasive bioimaging of mdr1 gene expression in vivo and in real time. The model uses a firefly luciferase (fLUC) gene inserted by homologous recombination into the murine mdr1a genetic locus. The inserted fLUC gene is preceded by a neo expression cassette flanked by loxP sites, so that Cre-mediated recombination is required to configure the fLUC gene directly under the control of the endogenous mdr1a promoter. We now demonstrate that the mdr1a.fLUC knock-in is a faithful reporter for mdr1a expression in naive animals, in which fLUC mRNA levels and luminescence intensities accurately parallel endogenous mdr1a mRNA expression. We also demonstrate xenobiotic-inducible regulation of mdr1a.fLUC expression in real time, in parallel with endogenous mdr1a expression, resulting in a more detailed understanding of the kinetics of mdr1a gene induction. This mouse model demonstrates the feasibility of using bioimaging coupled with Cre/loxP conditional knock-in to monitor regulated gene expression in vivo. It represents a unique tool with which to study the magnitude and kinetics of mdr1a induction under a variety of physiologic, pharmacologic, genetic, and environmental conditions.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/análise , Diagnóstico por Imagem/métodos , Expressão Gênica , Animais , Técnicas de Introdução de Genes , Integrases , Cinética , Luciferases de Vaga-Lume/genética , Medições Luminescentes , Camundongos , Modelos Animais , Distribuição Tecidual , Ativação Transcricional
6.
Cell Metab ; 2(4): 263-72, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16213228

RESUMO

Insulin controls glucose flux into muscle and fat by regulating the trafficking of GLUT4 between the interior and surface of cells. Here, we show that the AS160 Rab GTPase activating protein (GAP) is a negative regulator of basal GLUT4 exocytosis. AS160 knockdown resulted in a partial redistribution of GLUT4 from intracellular compartments to the plasma membrane, a concomitant increase in basal glucose uptake, and a 3-fold increase in basal GLUT4 exocytosis. Reexpression of wild-type AS160 restored normal GLUT4 behavior to the knockdown adipocytes, whereas reexpression of a GAP domain mutant did not revert the phenotype, providing the first direct evidence that AS160 GAP activity is required for basal GLUT4 retention. AS160 is the first protein identified that is specially required for basal GLUT4 retention. Our findings that AS160 knockdown only partially releases basal GLUT4 retention provides evidence that insulin signals to GLUT4 exocytosis by both AS160-dependent and -independent mechanisms.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Transporte Biológico , Endossomos/metabolismo , Exocitose , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Glucose/metabolismo , Humanos , Insulina/metabolismo , Proteína Antagonista do Receptor de Interleucina 1 , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores da Transferrina/metabolismo , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Transfecção
7.
Clin Cancer Res ; 15(9): 3023-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19366827

RESUMO

PURPOSE: Activating mutations within the tyrosine kinase domain of epidermal growth factor receptor (EGFR) are found in approximately 10% to 20% of non-small-cell lung cancer (NSCLC) patients and are associated with response to EGFR inhibitors. The most common NSCLC-associated EGFR mutations are deletions in exon 19 and L858R mutation in exon 21, together accounting for 90% of EGFR mutations. To develop a simple, sensitive, and reliable clinical assay for the identification of EGFR mutations in NSCLC patients, we generated mutation-specific rabbit monoclonal antibodies against each of these two most common EGFR mutations and aimed to evaluate the detection of EGFR mutations in NSCLC patients by immunohistochemistry. EXPERIMENTAL DESIGN: We tested mutation-specific antibodies by Western blot, immunofluorescence, and immunohistochemistry. In addition, we stained 40 EGFR genotyped NSCLC tumor samples by immunohistochemistry with these antibodies. Finally, with a panel of four antibodies, we screened a large set of NSCLC patient samples with unknown genotype and confirmed the immunohistochemistry results by DNA sequencing. RESULTS: These two antibodies specifically detect the corresponding mutant form of EGFR by Western blotting, immunofluorescence, and immunohistochemistry. Screening a panel of 340 paraffin-embedded NSCLC tumor samples with these antibodies showed that the sensitivity of the immunohistochemistry assay is 92%, with a specificity of 99% as compared with direct and mass spectrometry-based DNA sequencing. CONCLUSIONS: This simple assay for detection of EGFR mutations in diagnostic human tissues provides a rapid, sensitive, specific, and cost-effective method to identify lung cancer patients responsive to EGFR-based therapies.


Assuntos
Anticorpos Monoclonais , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação/imunologia , Animais , Bioensaio , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/secundário , Análise Mutacional de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina G/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Coelhos , Sensibilidade e Especificidade , Deleção de Sequência , Transplante Heterólogo , Células Tumorais Cultivadas
8.
Cancer Res ; 67(19): 9018-23, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909003

RESUMO

Overexpression of the epidermal growth factor receptor family member HER2 is found in approximately 30% of breast cancers and is a target for immunotherapy. Trastuzumab, a humanized monoclonal antibody against HER2, is cytostatic when added alone and highly successful in clinical settings when used in combination with other chemotherapeutic agents. Unfortunately, HER2 tumors in patients develop resistance to trastuzumab or metastasize to the brain, which is inaccessible to antibody therapy. Previously, we showed that the green tea polyphenol epigallocatechin-3 gallate (EGCG) inhibits growth and transformed phenotype of Her-2/neu-driven mouse mammary tumor cells. The different modes of action of EGCG and trastuzumab led us to hypothesize that EGCG will inhibit HER2-driven breast cancer cells resistant to trastuzumab. We studied trastuzumab-resistant BT474 human breast cancer cells, isolated by chronic trastuzumab exposure, and JIMT-1 breast cancer cells, derived from a pleural effusion in a patient who displayed clinical resistance to trastuzumab therapy. EGCG treatment caused a dose-dependent decrease in growth and cellular ATP production, and apoptosis at high concentrations. Akt activity was suppressed by EGCG leading to the induction of FOXO3a and target cyclin-dependent kinase inhibitor p27Kip1 levels. Thus, EGCG in combination with trastuzumab may provide a novel strategy for treatment of HER2-overexpressing breast cancers, given that EGCG can cross the blood-brain barrier.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Catequina/análogos & derivados , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catequina/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27 , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trastuzumab
9.
J STEM Outreach ; 2(1)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33912814

RESUMO

There is a critical need for more effective comprehensive programs to increase the number of underrepresented minority students pursuing scientific careers. Science education often is fragmented, delivered with single-focused approaches - traditional classroom lectures, or hands-on-activities, or conducting research. The current paper examines a comprehensive biomedical research program that integrated classroom teaching, hands-on-activities, conducting a research study, and mentoring from scientists in authentic scientific settings. We assessed short-term psychosocial outcomes and long-term academic outcomes in the participants, largely underrepresented minority high school students. The psychosocial outcomes assessed pre and post program include: knowledge of science pathways, attitudes toward science, self-efficacy in science, and scientific communication skills. Post-program results showed an increasing trend for knowledge of science pathways, attitudes toward science, and self-efficacy in science. Post-program, students also reported significant increases in feeling they had role models in science. A long-term assessment was conducted examining participating students' college attendance and majoring in a STEM field. The long-term assessment showed that 77% of students were attending college, 79% were majoring in STEM, and 75% were planning to pursue additional higher education. Findings provide evidence for the short-term and long-term benefits of a comprehensive biomedical research program conducted in an authentic scientific setting.

10.
Clin Cancer Res ; 24(5): 1216-1226, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180608

RESUMO

Purpose: Increased glycolysis and glucose dependence is a hallmark of malignancy that enables tumors to maximize cell proliferation. In HER2+ cancers, an increase in glycolytic capacity is associated with trastuzumab resistance. IGF-1R activation and t-Darpp overexpression both confer trastuzumab resistance in breast cancer. We therefore investigated a role for IGF-1R and t-Darpp in regulating glycolytic capacity in HER2+ breast cancers.Experimental Design: We examined the relationship between t-Darpp and IGF-1R expression in breast tumors and their respective relationships with patient survival. To assess t-Darpp's metabolic effects, we used the Seahorse flux analyzer to measure glucose metabolism in trastuzumab-resistant SK-BR-3 cells (SK.HerR) that have high endogenous t-Darpp levels and SK.tDrp cells that stably overexpress exogenous t-Darpp. To investigate t-Darpp's mechanism of action, we evaluated t-Darpp:IGF-1R complexes by coimmunoprecipitation and proximity ligation assays. We used pathway-specific inhibitors to study the dependence of t-Darpp effects on IGF-1R signaling. We used siRNA knockdown to determine whether glucose reliance in SK.HerR cells was mediated by t-Darpp.Results: In breast tumors, PPP1R1B mRNA levels were inversely correlated with IGF-1R mRNA levels and directly associated with shorter overall survival. t-Darpp overexpression was sufficient to increase glucose metabolism in SK.tDrp cells and essential for the glycolytic phenotype of SK.HerR cells. Recombinant t-Darpp stimulated glucose uptake, glycolysis, and IGF-1R-Akt signaling in SK-BR-3 cells. Finally, t-Darpp stimulated IGF-1R heterodimerization with ErbB receptors and required IGF-1R signaling to confer its metabolic effects.Conclusions: t-Darpp activates IGF-1R signaling through heterodimerization with EGFR and HER2 to stimulate glycolysis and confer trastuzumab resistance. Clin Cancer Res; 24(5); 1216-26. ©2017 AACR.


Assuntos
Neoplasias da Mama/patologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores de Somatomedina/metabolismo , Trastuzumab/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Isoenzimas/metabolismo , Multimerização Proteica , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1 , Transdução de Sinais , Análise de Sobrevida , Trastuzumab/uso terapêutico
11.
Pathogens ; 7(2)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882795

RESUMO

Non-cytopathic bovine viral diarrhea virus (ncp BVDV) can cause persistent infection (PI) in animals infected in utero during early gestation. PI animals shed the virus for life and are the major source of the virus in herds. The mechanism responsible for BVDV immune tolerance in the PI fetus is unknown. We assessed the impact of BVDV infection on the fetal liver. Dams were inoculated with ncp BVDV at gestational day 75. Fetal liver samples were collected at necropsy, 7 and 14 days post-maternal-BVDV inoculation. BVDV antigen was not detected in the liver at gestational day 82 (7 days post-maternal inoculation). However, at 14 days post-maternal inoculation, BVDV was detected by immunohistochemistry in fetal Kupffer cells. Flow cytometry analysis showed a higher percentage of hepatic immune cells expressed MHC I and MHC II in BVDV-infected fetal liver (as compared to uninfected controls). Immunofluorescence was used to identify Kupffer cells, which were positive for BVDV antigen, near populations of CD3+ lymphocytes. The identification of BVDV in the fetal liver Kupffer cells at 14 days post inoculation is interesting in the context of establishment of tolerance in persistent infection. These data indicate the presence of a hepatic immune response to fetal infection.

12.
Diabetes ; 55(8): 2171-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16873679

RESUMO

The insulin-signaling network regulates blood glucose levels, controls metabolism, and when dysregulated, may lead to the development of type 2 diabetes. Although the role of tyrosine phosphorylation in this network is clear, only a limited number of insulin-induced tyrosine phosphorylation sites have been identified. To address this issue and establish temporal response, we have, for the first time, carried out an extensive, quantitative, mass spectrometry-based analysis of tyrosine phosphorylation in response to insulin. The study was performed with 3T3-L1 adipocytes stimulated with insulin for 0, 5, 15, and 45 min. It has resulted in the identification and relative temporal quantification of 122 tyrosine phosphorylation sites on 89 proteins. Insulin treatment caused a change of at least 1.3-fold in tyrosine phosphorylation on 89 of these sites. Among the responsive sites, 20 were previously known to be tyrosine phosphorylated with insulin treatment, including sites on the insulin receptor and insulin receptor substrate-1. The remaining 69 responsive sites have not previously been shown to be altered by insulin treatment. They were on proteins with a wide variety of functions, including components of the trafficking machinery for the insulin-responsive glucose transporter GLUT4. These results show that insulin-elicited tyrosine phosphorylation is extensive and implicate a number of hitherto unrecognized proteins in insulin action.


Assuntos
Insulina/fisiologia , Fosfotirosina/metabolismo , Transdução de Sinais , Células 3T3-L1 , Adipócitos/química , Animais , Sítios de Ligação , Transportador de Glucose Tipo 4/química , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Cinética , Espectrometria de Massas , Camundongos , Fosfoproteínas/química , Fosforilação , Receptor de Insulina/química
13.
Cell Signal ; 40: 53-61, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28867659

RESUMO

t-Darpp is the truncated form of the dopamine- and cAMP-regulated phosphoprotein of 32kDa (Darpp-32) and has been demonstrated to confer resistance to trastuzumab, a Her2-targeted anticancer agent, via sustained signaling through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt pathway and activation of protein kinase A (PKA). The mechanism of t-Darpp-mediated PKA activation is poorly understood. In the PKA holoenzyme, when the catalytic subunits are bound to regulatory subunits RI or RII, kinase activity is inhibited. We investigated PKA activity and holoenzyme composition in cell lines overexpressing t-Darpp (SK.tDp) or a T39A phosphorylation mutant (SK.tDpT39A), as well as an empty vector control cell line (SK.empty). We also evaluated protein-protein interactions between t-Darpp and PKA catalytic (PKAc) or regulatory subunits RI and RII in those cell lines. SK.tDp cells had elevated PKA activity and showed diminished association of RI with PKAc, whereas SK.tDpT39A cells did not have these properties. Moreover, wild type t-Darpp associates with RI. Concurrent expression of Darpp-32 reversed t-Darrp's effects on PKA holoenzyme state, consistent with earlier observations that Darpp-32 reverses t-Darpp's activation of PKA. Together, t-Darpp phosphorylation at T39 seems to be crucial for t-Darpp-mediated PKA activation and this activation appears to occur through an association with RI and sequestering of RI away from PKAc. The t-Darpp-RI interaction could be a druggable target to reduce PKA activity in drug-resistant cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Neoplasias/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Dopamina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação , Receptor ErbB-2/genética , Trastuzumab/efeitos adversos , Trastuzumab/uso terapêutico
14.
FEBS Open Bio ; 7(9): 1328-1337, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904862

RESUMO

t-Darpp (truncated isoform of dopamine- and cAMP-regulated phosphoprotein) is a protein encoded by the PPP1R1B gene and is expressed in breast, colon, esophageal, gastric, and prostate cancers, as well as in normal adult brain striatal cells. Overexpression of t-Darpp in cultured cells leads to increased protein kinase A activity and increased phosphorylation of AKT (protein kinase B). In HER2+ breast cancer cells, t-Darpp confers resistance to the chemotherapeutic agent trastuzumab. To shed light on t-Darpp function, we studied its secondary structure, oligomerization status, metal-binding properties, and phosphorylation by cyclin-dependent kinases 1 and 5. t-Darpp exhibits 12% alpha helix, 29% beta strand, 24% beta turn, and 35% random coil structures. It binds calcium, but not other metals commonly found in biological systems. The T39 site, critical for t-Darpp activation of the AKT signaling pathway, is a substrate for phosphorylation by cyclin-dependent kinase 1 and cyclin-dependent kinase 5. Gel filtration chromatography, sedimentation equilibrium analysis, blue native gel electrophoresis, and glutaraldehyde-mediated cross-linking experiments demonstrate that the majority of t-Darpp exists as a monomer, but forms low levels (< 3%) of hetero-oligomers with its longer isoform Darpp-32. t-Darpp has a large Stokes radius of 4.4 nm relative to its mass of 19 kDa, indicating that it has an elongated structure.

15.
Nat Cell Biol ; 19(1): 60-67, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27992407

RESUMO

Signalling and post-transcriptional gene control are both critical for the regulation of pluripotency, yet how they are integrated to influence cell identity remains poorly understood. LIN28 (also known as LIN28A), a highly conserved RNA-binding protein, has emerged as a central post-transcriptional regulator of cell fate through blockade of let-7 microRNA biogenesis and direct modulation of mRNA translation. Here we show that LIN28 is phosphorylated by MAPK/ERK in pluripotent stem cells, which increases its levels via post-translational stabilization. LIN28 phosphorylation had little impact on let-7 but enhanced the effect of LIN28 on its direct mRNA targets, revealing a mechanism that uncouples LIN28's let-7-dependent and -independent activities. We have linked this mechanism to the induction of pluripotency by somatic cell reprogramming and the transition from naive to primed pluripotency. Collectively, our findings indicate that MAPK/ERK directly impacts LIN28, defining an axis that connects signalling, post-transcriptional gene control, and cell fate regulation.


Assuntos
Sistema de Sinalização das MAP Quinases , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Western Blotting , Células HeLa , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fosforilação , Domínios Proteicos , Estabilidade Proteica
16.
Diabetes ; 54(6): 1692-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15919790

RESUMO

AS160 is a newly described substrate for the protein kinase Akt that links insulin signaling and GLUT4 trafficking. In this study, we determined the expression of and in vivo insulin action on AS160 in human skeletal muscle. In addition, we compared the effect of physiological hyperinsulinemia on AS160 phosphorylation in 10 lean-to-moderately obese type 2 diabetic and 9 healthy subjects. Insulin infusion increased the phosphorylation of several proteins reacting with a phospho-Akt substrate antibody. We focused on AS160, as this Akt substrate has been linked to glucose transport. A 160-kDa phosphorylated protein was identified as AS160 by immunoblot analysis with an AS160-specific antibody. Physiological hyperinsulinemia increased AS160 phosphorylation 2.9-fold in skeletal muscle of control subjects (P < 0.001). Insulin-stimulated AS160 phosphorylation was reduced 39% (P < 0.05) in type 2 diabetic patients. AS160 protein expression was similar in type 2 diabetic and control subjects. Impaired AS160 phosphorylation was related to aberrant Akt signaling; insulin action on Akt Ser(473) phosphorylation was not significantly reduced in type 2 diabetic compared with control subjects, whereas Thr(308) phosphorylation was impaired 51% (P < 0.05). In conclusion, physiological hyperinsulinemia increases AS160 phosphorylation in human skeletal muscle. Moreover, defects in insulin action on AS160 may impair GLUT4 trafficking in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Insulina/fisiologia , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-akt
17.
Biochem J ; 391(Pt 1): 87-93, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15971998

RESUMO

Recently, we described a 160 kDa protein (designated AS160, for Akt substrate of 160 kDa) with a predicted Rab GAP (GTPase-activating protein) domain that is phosphorylated on multiple sites by the protein kinase Akt. Phosphorylation of AS160 in adipocytes is required for insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane. The aim of the present study was to determine whether AS160 is in fact a GAP for Rabs, and, if so, what its specificity is. We first identified a group of 16 Rabs in a preparation of intracellular vesicles containing GLUT4 by MS. We then prepared the recombinant GAP domain of AS160 and examined its activity against many of these Rabs, as well as several others. The GAP domain was active against Rabs 2A, 8A, 10 and 14. There was no significant activity against 14 other Rabs. GAP activity was further validated by the finding that the recombinant GAP domain with the predicted catalytic arginine residue replaced by lysine was inactive. Finally, it was found by immunoblotting that Rabs 2A, 8A and 14 are present in GLUT4 vesicles. These results indicate that AS160 is a Rab GAP, and suggest novel Rabs that may participate in GLUT4 translocation.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Adipócitos/metabolismo , Animais , Linhagem Celular , Cães , Ativação Enzimática , Humanos , Camundongos , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes , Vesículas Transportadoras/metabolismo
18.
PLoS One ; 10(6): e0132267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121470

RESUMO

Trastuzumab has led to improved survival rates of HER2+ breast cancer patients. However, acquired resistance remains a problem in the majority of cases. t-Darpp is over-expressed in trastuzumab-resistant cell lines and its over-expression is sufficient for conferring the resistance phenotype. Although its mechanism of action is unknown, t-Darpp has been shown to increase cellular proliferation and inhibit apoptosis. We have reported that trastuzumab-resistant BT.HerR cells that over-express endogenous t-Darpp are sensitized to EGFR inhibition in the presence (but not the absence) of trastuzumab. The purpose of the current study was to determine if t-Darpp might modulate sensitivity to EGFR inhibitors in trastuzumab-resistant cells. Using EGFR tyrosine kinase inhibitors AG1478, gefitinib and erlotinib, we found that trastuzumab-resistant SK.HerR cells were sensitized to EGFR inhibition, compared to SK-Br-3 controls, even in the absence of trastuzumab. t-Darpp knock-down in SK.HerR cells reversed their sensitivity to EGFR inhibition. Increased EGFR sensitivity was also noted in SK.tDp cells that stably over-express t-Darpp. High levels of synergy between trastuzumab and the EGFR inhibitors were observed in all cell lines with high t-Darpp expression. These cells also demonstrated more robust activation of EGFR signaling and showed greater EGFR stability than parental cells. The T75A phosphorylation mutant of t-Darpp did not confer sensitivity to EGFR inhibition nor activation of EGFR signaling. The over-expression of t-Darpp might facilitate enhanced EGFR signaling as part of the trastuzumab resistance phenotype. This study suggests that the presence of t-Darpp in HER2+ cancers might predict the enhanced response to dual HER2/EGFR targeting.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Receptores ErbB/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Gefitinibe , Humanos , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Trastuzumab/farmacologia , Tirfostinas/farmacologia
19.
Oncotarget ; 6(32): 33134-45, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26430732

RESUMO

Drug resistance is a major barrier to successful cancer treatment. For patients with HER2-positive breast cancer who initially respond to therapy, the majority develop resistance within one year of treatment. Patient outcomes could improve significantly if we can find and exploit common mechanisms of acquired resistance to different targeted therapies. Overexpression of t-Darpp, a truncated form of the dual kinase/phosphatase inhibitor Darpp-32, has been linked to acquired resistance to trastuzumab, a front-line therapy for HER2-positive breast cancer. Darpp-32 reverses t-Darpp's effect on trastuzumab resistance. In this study, we examined whether t-Darpp could be involved in resistance to lapatinib, another HER2-targeted therapeutic. Lapatinib-resistant SKBR3 cells (SK/LapR) showed a marked change in the Darpp-32:t-Darpp ratio toward a predominance of t-Darpp. Overexpression of t-Darpp alone was not sufficient to confer lapatinib resistance, but cells that overexpress t-Darpp partially mimicked the molecular resistance phenotype observed in SK/LapR cells exposed to lapatinib. SK/LapR cells failed to down-regulate Survivin and failed to induce BIM accumulation in response to lapatinib; cells overexpressing t-Darpp exhibited only the failed BIM accumulation. t-Darpp knock-down reversed this phenotype. Using a fluorescence-based co-culture system, we found that cells overexpressing t-Darpp formed colonies in lapatinib within 3-4 weeks, whereas parental cells in the same co-culture did not. Overall, t-Darpp appears to mediate a survival advantage in lapatinib, possibly linked to failed lapatinib-induced BIM accumulation. t-Darpp might also be relevant to acquired resistance to other cancer drugs that rely on BIM accumulation to induce apoptosis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fosfoproteína 32 Regulada por cAMP e Dopamina/biossíntese , Quinazolinas/farmacologia , Receptor ErbB-2/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lapatinib , Trastuzumab/farmacologia
20.
J Am Vet Med Assoc ; 246(12): 1358-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26043135

RESUMO

CASE DESCRIPTION: 136 pregnant beef cows were purchased in the fall of 2003. The following spring, 128 cows calved as expected; 8 cows were believed to have aborted with the fetuses unavailable for evaluation. Of the 128 calves born, 8 died within 2 weeks after birth and 9 were born with congenital abnormalities. CLINICAL FINDINGS: Cows and their calves were evaluated for bovine viral diarrhea virus (BVDV) infection. Forty-four of 120 calves, but 0 cows, tested positive for BVDV antigen by immunohistochemical staining of ear notch specimens. TREATMENT AND OUTCOME: Five BVDV test-positive calves died shortly after weaning, and the remaining 39 BVDV test-positive calves were moved to an isolated feedlot and retested for BVDV at 5 to 6 months of age; 36 had positive results, which indicated that they were persistently infected (PI) with BVDV, whereas 3 had negative results, which indicated that they were transiently infected with BVDV at the time of the first test. All PI calves were infected with the same BVDV type 2a strain. As yearlings, 17 of the 36 PI calves died peracutely with lesions consistent with mucosal disease, 6 died without gross lesions, and 2 were euthanized because of chronic ill thrift. The remaining 11 PI calves appeared healthy and were sold for slaughter. Screening of the following year's calf crop for BVDV by use of immunohistochemical staining of ear-notch specimens yielded negative results for all calves. CLINICAL RELEVANCE: Introduction of BVDV into a naïve cow herd resulted in a loss of 44% of the calf crop subsequent to reproductive loss, poor thrift, and mucosal disease.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/epidemiologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Surtos de Doenças/veterinária , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Vírus da Diarreia Viral Bovina/classificação , Feminino , Gravidez , South Dakota/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA