Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(1): 163-169, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36524972

RESUMO

We introduce a novel two-dimensional electronic system with ultrastrong interlayer interactions, namely, twisted bilayer graphene with a large twist angle, as an ideal ground for realizing interlayer-coherent excitonic condensates. In these systems, sub-nanometer atomic separation between the layers allows significant interlayer interactions, while interlayer electron tunneling is geometrically suppressed due to the large twist angle. By fully exploiting these two features we demonstrate that a sequence of odd-integer quantum Hall states with interlayer coherence appears at the second Landau level (N = 1). Notably the energy gaps for these states are of order 1 K, which is several orders of magnitude greater than those in GaAs. Furthermore, a variety of quantum Hall phase transitions are observed experimentally. All the experimental observations are largely consistent with our phenomenological model calculations. Hence, we establish that a large twist angle system is an excellent platform for high-temperature excitonic condensation.

2.
Phys Rev Lett ; 126(1): 016402, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480785

RESUMO

We construct new many-body invariants for 2D Chern and 3D chiral hinge insulators characterizing quantized pumping of bulk dipole and quadrupole moments. The many-body invariants are written entirely in terms of many-body ground state wave functions on a torus geometry with twisted boundary conditions and a set of unitary operators. We present a number of supporting arguments for the invariants via topological field theory interpretation, adiabatic pumping argument, and direct mapping to free-fermion band indices. Therefore, the invariants explicitly encircle several different pillars of theoretical descriptions of topological phases. Furthermore, our many-body invariants are written in forms which can be directly employed in various numerics including the exact diagonalization and the density-matrix renormalization group simulations. We finally confirm our invariants by numerical computations including an infinite density-matrix renormalization group on quasi-one-dimensional systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA