Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202417988, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382562

RESUMO

Rational design of molecular structures is one of the effective strategies to obtain high-performance organic cathode materials. However, besides the optimization of single-molecule structures, the influence of the "weak" interaction forces (e.g. hydrogen bonds) in organic cathode materials on the performance of batteries should be fully considered. Herein, three organic small molecules with different numbers of hydroxyl groups (namely nitrogen heterocyclic tetraketone (DAB), monohydroxyl nitrogen heterocyclic dione (HDA), dihydroxyl nitrogen heterocyclic dione (DHT)) were selected as the cathodes of aqueous zinc ion batteries (AZIBs), and the effect of the intermolecular hydrogen bonds on their electrochemical performance was studied for the first time. Clearly, the stable hydrogen-bond networks built through the hydroxyl groups significantly enhance the cycle stability of organic small-molecule cathodes and facilitate rapid proton conduction between the hydrogen-bond networks through the Grotthuss mechanism, thereby endowing them with excellent rate performance. In addition, a larger and more dense two-dimensional hydrogen-bond network can be constructed through multiple hydroxyl groups, further enhancing the structural stability of organic small-molecule cathodes, giving them better cycle tolerance, excellent rate performance, and extreme environmental tolerance.

2.
Angew Chem Int Ed Engl ; : e202416181, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305144

RESUMO

Organic cocrystals, representing one type of new functional materials, have gathered significant interest in various engineering areas. Owing to their diverse stacking modes, rich intermolecular interactions and abundant functional components, the physicochemical properties of organic cocrystals can be tailored to meet different requirements and exhibit novel characteristics. The past few years have witnessed the rapid development of organic cocrystals in both fundamental characteristics and various applications. Beyond the typical properties like ambipolarity, emission tuning ability, ferroelectricity, etc. that are previously well demonstrated, many novel impressive and cutting-edge properties and applications of cocrystals also emerge and advance recently. Especially during the nearest five years, photothermal conversion, room-temperature phosphorescence, thermally activated delay fluorescence, circularly polarized luminescence, organic solid-state lasers, near-infrared sensing, photocatalysis, batteries, and stimuli responses have been reported. In this minireview, these new properties are carefully summarized. Besides, some neoteric architecture and methodologies, such as host-guest structures and machine learning-based screening, are introduced. Finally, the potential future developments and expectations for organic cocrystals are discussed for further investigation on multiple functions and applications.

3.
Angew Chem Int Ed Engl ; 63(28): e202406511, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38712899

RESUMO

Alkali metals (e.g. Li, Na, and K) and multivalent metals (e.g. Zn, Mg, Ca, and Al) have become star anodes for developing high-energy-density rechargeable batteries due to their high theoretical capacity and excellent conductivity. However, the inevitable dendrites and unstable interfaces of metal anodes pose challenges to the safety and stability of batteries. To address these issues, covalent organic frameworks (COFs), as emerging materials, have been widely investigated due to their regular porous structure, flexible molecular design, and high specific surface area. In this minireview, we summarize the research progress of COFs in stabilizing metal anodes. First, we present the research origins of metal anodes and delve into their advantages and challenges as anodes based on the physical/chemical properties of alkali and multivalent metals. Then, special attention has been paid to the application of COFs in the host design of metal anodes, artificial solid electrolyte interfaces, electrolyte additives, solid-state electrolytes, and separator modifications. Finally, a new perspective is provided for the research of metal anodes from the molecular design, pore modulation, and synthesis of COFs.

4.
Angew Chem Int Ed Engl ; 63(39): e202409708, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38973371

RESUMO

Organic piezoelectric nanogenerators (PENGs) are attractive in harvesting mechanical energy for various self-powering systems. However, their practical applications are severely restricted by their low output open circuit voltage. To address this issue, herein, we prepared two two-dimensional (2D) covalent organic frameworks (COFs, CityU-13 and CityU-14), functionalized with fluorinated alkyl chains for PENGs. The piezoelectricity of both COFs was evidenced by switchable polarization, characteristic butterfly amplitude loops, phase hysteresis loops, conspicuous surface potentials and high piezoelectric coefficient value (d33). The PENGs fabricated with COFs displayed highest output open circuit voltages (60 V for CityU-13 and 50 V for CityU-14) and delivered satisfactory short circuit current with an excellent stability of over 600 seconds. The superior open circuit voltages of CityU-13 and CityU-14 rank in top 1 and 2 among all reported organic materials-based PENGs.

5.
Angew Chem Int Ed Engl ; 63(6): e202315338, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38126955

RESUMO

Helical morphologies are widely observed in nature, however, it is very challenging to prepare artificial helical polymers. Especially, precisely understanding the structure information of artificial metal-free helical covalent inorganic polymers via single-crystal X-ray diffraction (SCXRD) analysis is rarely explored. Here, we successfully prepare a novel metal-free helical covalent inorganic polymer ({[Te(C6 H5 )2 ] [PO3 (OH)]}n , named CityU-10) by introducing angular anions (HOPO3 2- ) into traditional tellurium-oxygen chains. The dynamic reversibility of the reaction is realized through the introduction of organic tellurium precursor and the slow hydrolysis of polyphosphoric acid. High-quality and large-size single crystals of CityU-10 have been successfully characterized via SCXRD, where the same-handed helical inorganic polymer chains form a pseudo-two-dimensional layer via multiple hydrogen-bonding interactions. The left-handed layers and right-handed layers alternatively stack together through weak hydrogen bonds to form a three-dimensional supramolecular structure. The single crystals of CityU-10 are found to display promising optical properties with a large birefringence. Our results would offer new guidelines for designing and preparing new crystalline covalent polymers through tellurium-based chemistry.

6.
J Am Chem Soc ; 145(28): 15465-15472, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37417328

RESUMO

Developing diverse synthetic routes to prepare various crystalline covalent organic frameworks (COFs) and enrich the family of COFs is very important and highly desirable. In this research, we demonstrate that Kröhnke oxidation (originally developed to prepare carbonyl compounds) can be employed as an efficient method to construct two crystalline nitrone-linked COFs (CityU-1 and CityU-2) through the ingenious design of the polynitroso-containing precursors as well as the exquisite control of the polymerization conditions. The formation and structure of nitrone-based linkage units have been confirmed through a mode reaction. The as-obtained crystalline COFs have been characterized by Fourier transform infrared and X-ray photoelectron spectroscopy, powder X-ray diffraction patterns, and scanning electron microscopy. Notably, CityU-1 exhibits a BET specific surface area of 497.9 m2g-1 with an I2 capture capacity of 3.0 g g-1 at 75 °C. Our research would provide more chances to prepare various crystalline COFs for diverse applications.

7.
J Org Chem ; 84(17): 11359-11365, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31416310

RESUMO

The asymmetric total syntheses of (-)-rhynchophylline and (+)-isorhynchophylline were achieved in 17 and 16 steps, respectively, from butanal and ethyl acrylate. Our synthesis features Carreira ring expansion to construct the tetracyclic spirooxindole core in high diastereoselectivity and the use of Bosch's chiral lactam for preparation of enantioenriched cyclic imine.

8.
Food Chem ; 439: 138101, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043286

RESUMO

In milk, fat exists in the form of milk fat globules (MFGs). The average size (average fat globules of different particle sizes) is the most common parameter when describing MFG size. There are different views on whether there is a correlation between MFG size and milk fat content. Is the MFG size correlated with milk fat content in ruminants? To address this question, we conducted two experiments. In experiment Ⅰ, dairy cows (n = 40) and dairy goats (n = 30) were each divided into a normal group and a low-fat group according to the milk fat content. In experiment Ⅱ, dairy cows (n = 16) and dairy goats (n = 12) were each divided into a normal group and a conjugated linoleic acid (CLA)-induced low-fat group. The normal groups were fed a basal diet, and the CLA-induced low-fat groups were fed the basal diet + 300 g/d CLA (cows) or the basal diet + 90 g/d CLA (goats). In both experiments, we determined the correlation between MFG size and milk composition and MFG distribution. The results showed that in the normal and low-fat groups of cows and goats, MFG size was not correlated with milk fat, protein, or lactose content or fat-to-protein ratio. Additionally, there was no difference in the distribution of large, medium, and small MFGs (P > 0.05). However, in the CLA-induced low-fat groups, we found a correlation between MFG size and milk fat content and fat-to-protein ratio (R2 > 0.3). Moreover, there was a significant change in the size distribution of MFGs. Therefore, in natural milk, MFG size was not correlated with milk fat content. Following CLA supplementation, MFG size was correlated with milk fat content. Our findings revealed that CLA and not milk fat affects MFG distribution and size.


Assuntos
Lactação , Ácidos Linoleicos Conjugados , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Leite/metabolismo , Dieta/veterinária , Cabras/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Suplementos Nutricionais
9.
Nanoscale Horiz ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39355898

RESUMO

Recently, pyrene-based covalent organic frameworks (PyCOFs) have aroused great interest because the large planar structure of the pyrene unit could effectively enhance the interlayer π-π interaction and promote the separation and migration of carriers, significantly improving the crystallinity and photoelectrical properties of PyCOFs. Since the first PyCOF-containing boroxate linkage was reported in 2008 by the Yaghi group, many PyCOFs with different kinds of linkages have been reported, exhibiting great potential applications in different fields such as adsorption/separation, chemical sensing, catalysis, energy storage, etc. However, as far as we know, the reviews related to PyCOFs are rare, although PyCOFs have been widely reported to show promising applications. Thus, it is right time and important for us to systematically summarize the research advance in PyCOFs, including the synthesis with different linkages and applications. Moreover, the prospects and obstacles facing the development of PyCOFs are discussed. We hope that this review will provide new insights into PyCOFs that can be explored for more attractive functions or applications.

10.
Small Methods ; : e2400185, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616739

RESUMO

Developing the films of N-containing unsubstituted poly(p-phenylene) (PPP) films for diverse applications is significant and highly desirable because the replacement of sp2 C atoms with sp2 N atoms will bring novel properties to the as-prepared polymers. In this research, an electrochemical-dehalogenation polymerization strategy is employed to construct two N-containing PPP films under constant potentials, where 2,5-diiodopyridine (DIPy) and 2,5-dibromopyrazine (DBPz) are used as starting agents. The corresponding polymers are named CityU-23 (for polypyridine) and CityU-24 (for polypyrazine). Moreover, it is found that both polymers can form films in situ on different conductive substrates (i.e., silicon, gold, ITO, and nickel), satisfying potential device fabrication. Furthermore, the as-obtained thin films of CityU-23 and CityU-24 exhibit good performance of alkaline hydrogen evolution reaction with the overpotential of 212.8 and 180.7 mV and the Tafel slope of 157.0 and 122.4 mV dec-1, respectively.

11.
Lifetime Data Anal ; 19(1): 117-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22965680

RESUMO

In this article, we propose an additive-multiplicative rates model for recurrent event data in the presence of a terminal event such as death. The association between recurrent and terminal events is nonparametric. For inference on the model parameters, estimating equation approaches are developed, and the asymptotic properties of the resulting estimators are established. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder cancer study is provided.


Assuntos
Modelos Estatísticos , Humanos , Tábuas de Vida , Recidiva Local de Neoplasia/etiologia , Recidiva , Fatores de Risco , Estatísticas não Paramétricas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia
12.
Chem Commun (Camb) ; 59(46): 7056-7059, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212063

RESUMO

The utilisation of enzymes as stimuli can activate theranostic agents in a highly specific manner. We report herein a far-red-absorbing boron dipyrromethene-based photosensitiser that is responsive towards the cancer-associated human NAD(P)H:quinone oxidoreductase 1, enabling the controlled restoration of photodynamic activity for selective elimination of cancer cells.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/farmacologia , NAD , NAD(P)H Desidrogenase (Quinona) , Quinonas
13.
ACS Appl Mater Interfaces ; 15(1): 1227-1233, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576066

RESUMO

Organic cathode materials have attracted extensive research interest for rechargeable lithium-ion batteries (LIBs) because of their diverse structures and tunable properties. However, the preparation of organic cathode materials with high capacities, long cycling life, and high energy densities still remains a big challenge. To address these issues, we designed and synthesized a novel multinitro-decorated organic small molecule, N4,N4''-bis(2,4-dinitrophenyl)-5'-(4-((2,4-dinitrophenyl)amino)phenyl)-[1,1':3',1''-terphenyl]-4,4''-diamine (TAPB-6NO2), where the unique electronic character of nitro group should enable TAPB-6NO2 to be a promising cathode candidate for LIBs. We found that the introduction of multiple nitro groups could efficiently reduce the solubility of TAPB-6NO2 in organic electrolytes, resulting in a high specific capacity of around 180 mAh g-1 and stable cycling with a capacity retention of 91% after 1100 cycles at 1000 mA g-1. This work suggests that attaching multiple nitro groups on a small molecule is an effective approach to construct high-performance organic cathode materials for stable and sustainable rechargeable LIBs.

14.
J Vis Exp ; (193)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971432

RESUMO

Lipid droplets (LDs) are organelles that play an important role in lipid metabolism and neutral lipid storage in cells. They are associated with a variety of metabolic diseases, such as obesity, fatty liver disease, and diabetes. In hepatic cells, the sizes and numbers of LDs are signs of fatty liver disease. Moreover, the oxidative stress reaction, cell autophagy, and apoptosis are often accompanied by changes in the sizes and numbers of LDs. As a result, the dimensions and quantity of LDs are the basis of the current research regarding the mechanism of LD biogenesis. Here, in fatty acid-induced bovine hepatic cells, we describe how to use oil red O to stain LDs and to investigate the sizes and numbers of LDs. The size distribution of LDs is statistically analyzed. The process of small LDs fusing into large LDs is also observed by a live cell imaging system. The current work provides a way to directly observe the size change trend of LDs under different physiological conditions.


Assuntos
Gotículas Lipídicas , Hepatopatia Gordurosa não Alcoólica , Animais , Bovinos , Gotículas Lipídicas/metabolismo , Hepatócitos/metabolismo , Obesidade/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-36753515

RESUMO

Organic radical batteries (ORBs) with radical-branched polymers as cathode materials represent a valuable alternative to meet the continuously increasing demand on energy storage. However, the low theoretical capacities of current radical-contained compounds strongly hamper their practical applications. To address this issue, a chemically robust polynitrosoarene (tris(4-nitrosophenyl)amine) with a pronounced radical property is rationally designed as an efficient cathode for ORBs. Its unique multi-nitroso structure displays remarkably reversible charge/discharge capability and a superior capacity up to 300 mA h g-1 (93% theoretical capacity) after 100 cycles at 100 mA g-1 within a broad potential window of 1.3-4.3 V (vs Li+/Li). Moreover, the ultra-long cycle life is also achieved at 1000 mA g-1 with 85% preservation of the capacity after 1000 cycles, making it the best-reported organic radical cathode material for lithium-ion batteries.

16.
ACS Nano ; 17(23): 23903-23912, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014811

RESUMO

Persistent covalent-organic framework (COF) radicals hold important applications in magnetics and spintronics; however, their facile synthesis remains a daunting challenge. Here, three p-phenylenediacetonitrile-based COFs (named CityU-4, CityU-5, and CityU-6) were synthesized. Upon heat treatment (250 °C for CityU-4 and CityU-5 or 220 °C for CityU-6), these frameworks were brought into their persistent radical forms (no obvious changes after at least one year), together with several observable factors, including color changes, red-shifted absorption, the appearance of electron spin resonance (ESR) signals, and detectable magnetic susceptibility. The theoretical simulation suggests that after heat treatment, lower total energy and nonzero spin density are two main factors to guarantee persistent COFs radicals and polarized spin distributions. This work provides an efficient method for the preparation of persistent COF radicals with promising potentials.

17.
Adv Mater ; : e2306414, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589261

RESUMO

The use of chiral covalent organic frameworks (COFs) as active elements in photodetectors to directly identify circularly polarized light (CPL) can meet the requirement of integration and miniaturization of the as-fabricated devices. Herein, the design and synthesis of two isoreticular chiral two-dimensional (2D) COFs (CityU-7 and CityU-8) by introducing photosensitive porphyrin-based amines (5,10,15,20-tetrakis(4-aminophenyl)porphyrin) to enhance the optical absorption and chiral aldehyde linkage (2,5-bis((S/R))-2-methylbutoxy)terephthalaldehyde) to engender chirality for direct CPL detection  are  reported. Their crystalline structures  were  confirmed by powder X-ray diffraction, Fourier-transform infrared spectroscopy, and low-dose transition electron microscopy. Employing both chiral COFs as the active layers in photodetectors, left-handed circularly (LHC) and right-handed circularly (RHC) polarized light at 405 nm can be well distinguishable with short response time, high responsivity, and satisfying detectivity. The study provides the first example on the design and synthesis of chiral COFs for direct detection of CPL.

18.
Mater Horiz ; 9(1): 121-146, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34842260

RESUMO

Highly crystalline covalent organic frameworks (COFs) or conjugated polymers (CPs) are very important and highly desirable because these materials would display better performance in diverse devices and provide more structure-property related information. However, how to achieve highly crystalline or single-crystal COFs and CPs is very challenging. Recently, many research studies have demonstrated the possibility of enhancing the crystallinity of COFs and CPs. Thus, it is timely to offer an overview of the important progress in improving the crystallinity of COFs and CPs from the viewpoint of design strategies. These strategies include polycondensation reaction optimization, improving the planarity, fluorine substitution, side chain engineering, and so on. Furthermore, the challenges and perspectives are also discussed to promote the realization of highly crystalline or single-crystal COFs and CPs.

19.
Chem Commun (Camb) ; 57(82): 10711-10714, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34553711

RESUMO

Herein, we describe a soluble iron(II)-phthalocyanine, [FeII(tBu4Pc)(py)2] (Pc = phthalocyaninato(2-)), as an effective catalyst in intramolecular C(sp3)-H bond amination, with alkyl azides as the nitrogen source, to afford the amination products in moderate to excellent yields with a broad substrate scope.

20.
Eur J Med Chem ; 226: 113827, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34530383

RESUMO

Cholinergic neurons are ubiquitous and involved in various higher brain functions including learning and memory. Patients with Alzheimer's disease exhibit significant dysfunction and loss of cholinergic neurons. Meanwhile, such cholinergic deficits can be potentially relieved pharmacologically by increasing acetylcholine. Acetylcholinesterase (AChE) inhibitors have been used to improve cholinergic transmission in the brain for two decades and have proven effective for alleviating symptoms in the early stages of Alzheimer's disease. Therefore, the search for AChE inhibitors for drug development is ongoing. The enzymatic pocket of AChE has long been the target of several drug designs over the last two decades. The peripheral and catalytic sites of AChE are simultaneously bound by several dimeric molecules, enabling more-efficient inhibition. Here, we used 6-chlorotacrine and the tetrahydroquinolone moiety of huperzine A to design and synthesize a series of heterodimers that inhibit AChE at nanomolar potency. Specifically, compound 7b inhibits AChE with an IC50 < 1 nM and spares butyrylcholinesterase. Administration of 7b to mouse brain slices restores synaptic activity impaired by pirenzepine, a muscarinic M1-selective antagonist. Moreover, oral administration of 7b to C57BL/6 mice enhances hippocampal long-term potentiation in a dose-dependent manner and is detectable in the brain tissue. All these data supported that 7b is a potential cognitive enhancer and is worth for further exploration.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Quinolinas/farmacologia , Tacrina/farmacologia , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos , Tacrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA