Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Plant Microbe Interact ; 34(9): 990-1000, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34010013

RESUMO

High-throughput resistance assays in plants have a limited selection of suitable pathogens. In this study, we developed a Pseudomonas syringae strain chromosomally tagged with the Nanoluc luciferase (NL) from the deep-sea shrimp Oplophorus gracilirostris, a bioluminescent marker significantly brighter than the conventional firefly luciferase. Our reporter strain tagged with NL was more than 100 times brighter than P. syringae tagged with the luxCDABE operon from Photorhabdus luminescens, one of the existing luciferase-based strains. In planta imaging was improved by using the surfactant Silwet L-77, particularly at a lower reporter concentration. Using this imaging system, more than 30 epigenetic mutants were analyzed for their resistance traits because the defense signaling pathway is known to be epigenetically regulated. SWC1, a defense-related chromatin remodeling complex, was found to be a positive defense regulator, which supported one of two earlier conflicting reports. Compromises in DNA methylation in the CG context led to enhanced resistance against virulent Pseudomonas syringae pv. tomato. Dicer-like and Argonaute proteins, important in the biogenesis and exerting the effector function of small RNAs, respectively, showed modest but distinct requirements for effector-triggered immunity and basal resistance to P. syringae pv. tomato. In addition, the transcriptional expression of an epigenetic component was found to be a significant predictor of its immunity contribution. In summary, this study showcased how a high-throughput resistance assay enabled by a pathogen strain with an improved luminescent reporter could provide insightful knowledge about complex defense signaling pathways.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Luciferases , Luminescência , Doenças das Plantas , Pseudomonas syringae/metabolismo , Transdução de Sinais
2.
Plant Cell ; 28(7): 1738-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27335451

RESUMO

Ca(2+) signaling is critical to plant immunity; however, the channels involved are poorly characterized. Cyclic nucleotide-gated channels (CNGCs) are nonspecific, Ca(2+)-permeable cation channels. Plant CNGCs are hypothesized to be negatively regulated by the Ca(2+) sensor calmodulin (CaM), and previous work has focused on a C-terminal CaM-binding domain (CaMBD) overlapping with the cyclic nucleotide binding domain of plant CNGCs. However, we show that the Arabidopsis thaliana isoform CNGC12 possesses multiple CaMBDs at cytosolic N and C termini, which is reminiscent of animal CNGCs and unlike any plant channel studied to date. Biophysical characterizations of these sites suggest that apoCaM interacts with a conserved isoleucine-glutamine (IQ) motif in the C terminus of the channel, while Ca(2+)/CaM binds additional N- and C-terminal motifs with different affinities. Expression of CNGC12 with a nonfunctional N-terminal CaMBD constitutively induced programmed cell death, providing in planta evidence of allosteric CNGC regulation by CaM. Furthermore, we determined that CaM binding to the IQ motif was required for channel function, indicating that CaM can both positively and negatively regulate CNGC12. These data indicate a complex mode of plant CNGC regulation by CaM, in contrast to the previously proposed competitive ligand model, and suggest exciting parallels between plant and animal channels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Mol Plant Microbe Interact ; 29(9): 674-687, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27482822

RESUMO

To assess the role of MORC1 in epigenetics in relation to plant immunity, genome-wide chromatin accessibility was compared between mock- or Pseudomonas syringae pv. tomato-inoculated wild type (WT) Arabidopsis, the morc1/2 double mutant, or both. Most changes in chromatin accessibility, scored by DNase I hypersensitive sites (DHSs), were located in the promoters of genes and transposable elements (TEs). Comparisons between morc1/2 and WT receiving the same treatment revealed differential DHSs (dDHSs) predominantly associated with heterochromatic TEs. By contrast, comparisons between mock- and P. syringae pv. tomato-inoculated plants from the same genotype showed dDHSs associated with biotic and abiotic stress-related genes; a smaller but significant population was in TEs. Moreover, many defense genes, including PR-1, PR-2, and PR-5, were proximal to P. syringae pv. tomato-induced, TE-associated dDHSs. A random subset of these defense genes showed moderately delayed or reduced expression or both in P. syringae pv. tomato-infected morc1/2 as compared with WT. MORC1 was physically bound to chromatin in a P. syringae pv. tomato infection-responsive manner at sites dispersed throughout the genome. Notably, silencing of TE-associated dDHSs proximal to these infection-induced, MORC1-interacting sites led to significant suppression of P. syringae pv. tomato-induced transcription of adjacent defense genes, including PR-1. These results provide evidence that MORC1 is associated with TEs and suggest that a subset of these TEs may help regulate their proximal defense genes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Doenças das Plantas/imunologia , Pseudomonas syringae/fisiologia , Adenosina Trifosfatases/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Cromatina/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
4.
Mol Plant Microbe Interact ; 28(8): 927-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25822715

RESUMO

The microrchidia (MORC) proteins, a subset of the GHKL ATPase superfamily, were recently described as components involved in transcriptional gene silencing and plant immunity in Arabidopsis. To assess the role of MORC1 during resistance to Phytophthora infestans in solanaceous species, we altered the expression of the corresponding MORC1 homologs in potato, tomato, and Nicotiana benthamiana. Basal resistance to P. infestans was compromised in StMORC1-silenced potato and enhanced in overexpressing lines, indicating that StMORC1 positively affects immunity. By contrast, silencing SlMORC1 expression in tomato or NbMORC1 expression in N. benthamiana enhanced basal resistance to this oomycete pathogen. In addition, silencing SlMORC1 further enhanced resistance conferred by two resistance genes in tomato. Transient expression of StMORC1 in N. benthamiana accelerated cell death induced by infestin1 (INF1), whereas SlMORC1 or NbMORC1 suppressed it. Domain-swapping and mutational analyses indicated that the C-terminal region dictates the species-specific effects of the solanaceous MORC1 proteins on INF1-induced cell death. This C-terminal region also was required for homodimerization and phosphorylation of recombinant StMORC1 and SlMORC1, and its transient expression induced spontaneous cell death in N. benthamiana. Thus, this C-terminal region likely plays important roles in both determining and modulating the biological activity of MORC1 proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Plantas/metabolismo , Solanaceae/imunologia , Solanaceae/microbiologia , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Fosforilação , Filogenia , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Sesquiterpenos/farmacologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia
5.
Plant Physiol ; 164(2): 866-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390392

RESUMO

MORC1 and MORC2, two of the seven members of the Arabidopsis (Arabidopsis thaliana) Compromised Recognition of Turnip Crinkle Virus1 subfamily of microrchidia Gyrase, Heat Shock Protein90, Histidine Kinase, MutL (GHKL) ATPases, were previously shown to be required in multiple layers of plant immunity. Here, we show that the barley (Hordeum vulgare) MORCs also are involved in disease resistance. Genome-wide analyses identified five MORCs that are 37% to 48% identical on the protein level to AtMORC1. Unexpectedly, and in clear contrast to Arabidopsis, RNA interference-mediated knockdown of MORC in barley resulted in enhanced basal resistance and effector-triggered, powdery mildew resistance locus A12-mediated resistance against the biotrophic powdery mildew fungus (Blumeria graminis f. sp. hordei), while MORC overexpression decreased resistance. Moreover, barley knockdown mutants also showed higher resistance to Fusarium graminearum. Barley MORCs, like their Arabidopsis homologs, contain the highly conserved GHKL ATPase and S5 domains, which identify them as members of the MORC superfamily. Like AtMORC1, barley MORC1 (HvMORC1) binds DNA and has Mn2+-dependent endonuclease activities, suggesting that the contrasting function of MORC1 homologs in barley versus Arabidopsis is not due to differences in their enzyme activities. In contrast to AtMORCs, which are involved in silencing of transposons that are largely restricted to pericentromeric regions, barley MORC mutants did not show a loss-of-transposon silencing regardless of their genomic location. Reciprocal overexpression of MORC1 homologs in barley and Arabidopsis showed that AtMORC1 and HvMORC1 could not restore each other's function. Together, these results suggest that MORC proteins function as modulators of immunity, which can act negatively (barley) or positively (Arabidopsis) dependent on the species.


Assuntos
Adenosina Trifosfatases/metabolismo , Carmovirus/metabolismo , Resistência à Doença/imunologia , Hordeum/enzimologia , Hordeum/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/ultraestrutura , Ascomicetos , Botrytis/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Elementos de DNA Transponíveis/genética , DNA de Plantas/metabolismo , Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Hordeum/genética , Hordeum/microbiologia , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Pseudomonas syringae/fisiologia , Homologia de Sequência do Ácido Nucleico
6.
Plant Cell ; 24(3): 1271-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22454454

RESUMO

Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)-deficient mutant aba2 enhances resistance mediated by the resistance (R) gene suppressor of npr1-1 constitutive1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein resistance to Pseudomonas syringae4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Resistência à Doença , Temperatura Alta , Proteínas de Plantas/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo
7.
Plant Cell ; 23(9): 3374-91, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21949153

RESUMO

Receptors localized at the plasma membrane are critical for the recognition of pathogens. The molecular determinants that regulate receptor transport to the plasma membrane are poorly understood. In a screen for proteins that interact with the FLAGELIN-SENSITIVE2 (FLS2) receptor using Arabidopsis thaliana protein microarrays, we identified the reticulon-like protein RTNLB1. We showed that FLS2 interacts in vivo with both RTNLB1 and its homolog RTNLB2 and that a Ser-rich region in the N-terminal tail of RTNLB1 is critical for the interaction with FLS2. Transgenic plants that lack RTNLB1 and RTNLB2 (rtnlb1 rtnlb2) or overexpress RTNLB1 (RTNLB1ox) exhibit reduced activation of FLS2-dependent signaling and increased susceptibility to pathogens. In both rtnlb1 rtnlb2 and RTNLB1ox, FLS2 accumulation at the plasma membrane was significantly affected compared with the wild type. Transient overexpression of RTNLB1 led to FLS2 retention in the endoplasmic reticulum (ER) and affected FLS2 glycosylation but not FLS2 stability. Removal of the critical N-terminal Ser-rich region or either of the two Tyr-dependent sorting motifs from RTNLB1 causes partial reversion of the negative effects of excess RTNLB1 on FLS2 transport out of the ER and accumulation at the membrane. The results are consistent with a model whereby RTNLB1 and RTNLB2 regulate the transport of newly synthesized FLS2 to the plasma membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Quinases/metabolismo , Receptores Imunológicos/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Glicosilação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Análise Serial de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores Imunológicos/genética
8.
Plant Cell ; 22(3): 918-36, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20332379

RESUMO

Resistance gene-mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene-mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2(DD) was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Endossomos/metabolismo , Doenças das Plantas/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Morte Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Imunidade Inata , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Pseudomonas syringae/fisiologia , RNA de Plantas/genética , Nicotiana/genética , Nicotiana/imunologia
9.
Methods Mol Biol ; 2690: 101-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450140

RESUMO

The characterization of protein-protein interactions (PPI) often provides functional information about a target protein. Yeast-two-hybrid (Y2H) and luminescence/fluorescence-based detections, therefore, have been widely utilized for assessing PPI. In addition, a co-immunoprecipitation (co-IP) method has also been adopted with transient protein expression in Nicotiana benthamiana (N. benthamiana) infiltrated with Agrobacterium tumefaciens. Herein, we describe a co-IP procedure in which structural maintenance of chromosome 1 (SMC1), identified from a Y2H screening, was verified as an interacting partner for microchidia 1 (MORC1), a protein well known for its function in plant immunity and epigenetics. SMC1 and MORC1 were transiently expressed in N. benthamiana when infiltrated by Agrobacterium with the respective genes. From this approach, we identified a region of SMC1 responsible for interacting with MORC1. The co-IP method, of which outputs are mainly from immunoblot analysis, provided information about target protein expression as well, which is often useful for troubleshooting. Using this feature, we showcased a PPI confirmation from our SMC1-MORC1 study in which a full-length SMC1 protein was not detectable, and, therefore, a subsequent truncated mutant analysis had to be employed for PPI verification.


Assuntos
Nicotiana , Proteínas , Nicotiana/metabolismo , Proteínas/metabolismo , Agrobacterium tumefaciens/genética , Proteína Estafilocócica A/metabolismo , Imunoprecipitação
10.
Methods Mol Biol ; 2328: 227-252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34251630

RESUMO

Tracking RNA transcription has been one of the most powerful tools to gain insight into the biological process. While a wide range of molecular methods such as northern blotting, RNA-seq, and quantitative RT-PCR are available, one of the barriers in transcript analysis is an inability to accommodate a sufficient number of samples to achieve high resolution in dynamic transcriptional changes. RASL-seq (RNA-mediated oligonucleotide Annealing, Selection, and Ligation with next-generation sequencing) is a sequencing-based transcription profiling tool that processes hundreds of samples assessing a set of over a hundred genes with a fraction of the cost of a conventional RNA-seq. We described a RASL-seq protocol for assessing 288 genes mostly including defense genes to capture their dynamic nature. We demonstrated that this transcriptional profiling method produced a highly reliable outcome comparable to a conventional RNA-seq and quantitative RT-PCR.


Assuntos
Arabidopsis/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interações Hospedeiro-Patógeno/genética , Oligonucleotídeos/genética , Doenças das Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real
11.
Biochem Biophys Res Commun ; 398(2): 242-6, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20599732

RESUMO

Ubiquitin is a small polypeptide and ubiquitination is the post-translational modification by ubiquitin protein, resulting in degradation of target proteins by the 26S proteasome complex. Here, we found that E3 ubiquitin ligase SINAT5, an Arabidopsis homologue of the Drosophila SINA RING-finger protein, interacts directly with LHY, a component of the circadian oscillator, and DET1, a negative regulator of light-regulated gene expression. We also found that SINAT5 has E3 ubiquitination activity for LHY but not for DET1. Interestingly, LHY ubiquitination by SINAT5 was inhibited by DET1. Late flowering of sinat5 mutants indicates that flowering time can be controlled by DET1 through regulation of LHY stability by SINAT5.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Flores/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Técnicas do Sistema de Duplo-Híbrido
12.
Plant J ; 56(3): 457-69, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18643993

RESUMO

We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth beta-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K(+)-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the alpha-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general.


Assuntos
Aminoácidos/química , Proteínas de Arabidopsis/química , Arabidopsis/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Sequência de Aminoácidos , Aminoácidos/genética , Arabidopsis/química , Proteínas de Arabidopsis/genética , Cruzamentos Genéticos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Genes de Plantas , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plasmídeos , Estrutura Secundária de Proteína , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Relação Estrutura-Atividade , Nicotiana/química , Nicotiana/genética
13.
Mol Plant Microbe Interact ; 21(11): 1398-407, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18842090

RESUMO

A coiled coil-nucleotide binding site-leucine rich repeat-type resistance gene, RCY1, confers resistance to a yellow strain of Cucumber mosaic virus, CMV(Y), in Arabidopsis thaliana ecotype C24. Resistance to CMV(Y) in C24 is accompanied by a hypersensitive response (HR) that is characterized by the development of necrotic local lesions at the primary infection sites. To further study the HR and resistance to CMV(Y) in ecotype Col-0, which is susceptible to CMV(Y), Col-0 were transformed with RCY1. Systemic spread of CMV(Y) was completely suppressed in RCY1-transformed Col-0 (Col::pRCY1 lines 2 to 6), whereas virulent strain CMV(B2) spread and multiplied systemically in these transgenic lines similar to that in wild-type Col-0. Interestingly, the resistant phenotype of Col::pRCY1 varied among the lines. In lines 3 and 6, in which levels of RCY1 transcript were similar to that in wild-type C24, the HR and resistance to CMV(Y) was induced. Line 4, which expresses moderately elevated levels of RCY1 transcript, exhibited moderately enhanced resistance compared with that in C24 or line 3. In contrast, lines 2 and 5, which highly overexpress the RCY1 gene, did not exhibit either visible lesions or a micro-HR on the inoculated leaves. Moreover, virus coat protein was not detected in either inoculated or noninoculated upper leaves of these two lines, suggesting that extreme resistance (ER) to CMV(Y) was induced by high levels of expression of RCY1. Furthermore, in transgenic lines expressing hemagglutinin (HA) epitope-tagged RCY1 (Col::pRCY1-HA), high levels of accumulation of RCY1-HA protein were also correlated with the ER phenotype. Global gene expression analysis in line 2, which highly overexpresses RCY1, indicated that expression of several defense-related genes were constitutively elevated compared with wild-type Col-0. Despite this, line 2 did not have enhanced resistance to other avirulent and virulent pathogens. Take together, constitutive accumulation of high levels of RCY1 protein appears to regulate the strength of RCY1-conferred resistance in a gene-for-gene manner and implies that ER and HR-associated resistance differ only in the strength of resistance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cucumovirus/fisiologia , Pseudomonas syringae/fisiologia , Arabidopsis/microbiologia , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Northern Blotting , Western Blotting , Regulação da Expressão Gênica de Plantas , Hemaglutininas/genética , Hemaglutininas/metabolismo , Interações Hospedeiro-Patógeno , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Methods Mol Biol ; 1578: 263-272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220432

RESUMO

Changes in chromatin accessibility are an important aspect of the molecular changes that occur in eukaryotic cells responding to stress, and they appear to play a critical role in stress-induced transcriptional activation/reprogramming and epigenetic changes. In plants, pathogen infection has been shown to induce rapid and drastic transcriptional reprogramming; growing evidence suggests that chromatin remodeling plays an essential role in this phenomenon. The recent development of genomic tools to assess chromatin accessibility presents a significant opportunity to investigate the relationship between chromatin dynamicity and gene expression. In this protocol, we have adopted a popular chromatin accessibility assay, DNase-seq, to measure chromatin accessibility in Arabidopsis infected with the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). DNase-seq provides information on chromatin accessibility through the sequencing of DNA fragments generated by DNase I digestion of open chromatin, followed by mapping these sequences on a reference genome. Of the two popular DNase-seq approaches, we based our method on the Stamatoyannopoulos protocol, which involves two DNase cleavages rather than a single cleavage, followed by size fractionation. Please note that this two-cleavage approach is widely accepted and has been used extensively by ENCODE (Encyclopedia of DNA Elements) project, a public research consortium investigating cis- and trans-elements in the transcriptional regulation in animal cells. To enhance the quality of the chromatin accessibility assay, we modified this protocol by including two centrifugation steps for nuclear enrichment and size fractionation and an extra washing step for removal of chloroplasts and Pst. The outcomes obtained by this approach are also discussed.


Assuntos
Arabidopsis/genética , Cromatina/genética , Pseudomonas syringae/fisiologia , Análise de Sequência de DNA/métodos , Arabidopsis/microbiologia , Montagem e Desmontagem da Cromatina , Pegada de DNA , Desoxirribonucleases/metabolismo , Epigênese Genética , Genoma de Planta
15.
Front Plant Sci ; 8: 1720, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093720

RESUMO

Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5 fold. MORC proteins in plants were first discovered via a genetic screen for Arabidopsis mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and transposable element repression. Emerging data suggest that MORC proteins also participate in pathogen-induced chromatin remodeling and epigenetic gene regulation. In addition, biochemical analyses recently demonstrated that plant MORCs have topoisomerase II (topo II)-like DNA modifying activities that may be important for their function. Interestingly, animal MORC proteins exhibit many parallels with their plant counterparts, as they have been implicated in disease development and gene silencing. In addition, human MORCs, like plant MORCs, bind salicylic acid and this inhibits some of their topo II-like activities. In this review, we will focus primarily on plant MORCs, although relevant comparisons with animal MORCs will be provided.

16.
Mol Plant Pathol ; 17(9): 1382-1397, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26780303

RESUMO

HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance.


Assuntos
Estresse do Retículo Endoplasmático , Nicotiana/imunologia , Nicotiana/virologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Proteínas do Capsídeo/metabolismo , Carmovirus/metabolismo , Morte Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Tunicamicina/farmacologia
17.
Mol Plant Microbe Interact ; 18(10): 1027-34, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16255241

RESUMO

The salicylic acid-induced protein kinase (SIPK) of tobacco, which is a mitogen-activated protein kinase (MAPK), is activated by various biotic and abiotic treatments. Overexpression of SIPK has been shown to trigger cell death. In this study, a targeted yeast two-hybrid approach identified the tobacco transcription factor WRKY1 as a potential substrate. SIPK phosphorylated WRKY1, which resulted in enhanced DNA-binding activity of WRKY1 to its cognate binding site, a W box sequence from the tobacco chitinase gene CHN50. SIPK-mediated enhancement of WRKY1 DNA-binding activity was inhibited by staurosporine, a general kinase inhibitor. Co-expression of SIPK and WRKY1 in Nicotiana benthamiana led to more rapid cell death than expression of SIPK alone, suggesting that WRKY1 is involved in the formation of hypersensitive response-like cell death and may be a component of the signaling cascade downstream of SIPK.


Assuntos
Proteínas de Arabidopsis/metabolismo , Morte Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Fosforilação , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ligação Proteica , Fatores de Transcrição/fisiologia
18.
Nat Commun ; 3: 1297, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23250427

RESUMO

Arabidopsis thaliana CRT1 (compromised for recognition of Turnip Crinkle Virus) was previously shown to be required for effector-triggered immunity. Sequence analyses previously revealed that CRT1 contains the ATPase and S5 domains characteristic of Microchidia (MORC) proteins; these proteins are associated with DNA modification and repair. Here we show that CRT1 and its closest homologue, CRH1, are also required for pathogen-associated molecular pattern (PAMP)-triggered immunity, basal resistance, non-host resistance and systemic acquired resistance. Consistent with its role in PAMP-triggered immunity, CRT1 interacted with the PAMP recognition receptor FLS2. Subcellular fractionation and transmission electron microscopy detected a subpopulation of CRT1 in the nucleus, whose levels increased following PAMP treatment or infection with an avirulent pathogen. These results, combined with the demonstration that CRT1 binds DNA, exhibits endonuclease activity, and affects tolerance to the DNA-damaging agent mitomycin C, argue that this prototypic eukaryotic member of the MORC superfamily has important nuclear functions during immune response activation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/imunologia , Endodesoxirribonucleases/fisiologia , Endonucleases/fisiologia , Imunidade Vegetal/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases/imunologia , Endodesoxirribonucleases/metabolismo , Endonucleases/imunologia , Microscopia Eletrônica de Transmissão , Mitomicina/farmacologia , Doenças das Plantas/imunologia , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia
19.
Plant Signal Behav ; 3(9): 689-90, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19704828

RESUMO

Resistance (R) gene-mediated immunity provides plants with rapid and strain-specific protection against pathogen infection. Our recent study using the genetically tractable Arabidopsis and turnip crinkle virus (TCV) pathosystem revealed a novel component, named CRT1 (compromised for recognition of the TCV CP), that is involved in general R gene-mediated signaling, including that mediated by HRT, an R gene against TCV. The Arabidopsis CRT1 gene family contains six additional members, of which two share high homology to CRT1 (75 and 81% a.a. identity); either CRT1 or its closest homolog restore the cell death phenotype suppressed by crt1. Analysis of single knock-out mutants for CRT1 and its closest homologs suggest that each may have unique and redundant functions. Here, we provide insight into the screening conditions that enabled identification of a mutant gene despite the presence of functionally redundant family members. We also discuss a potential mechanism that may regulate the interaction between CRT1 and R proteins.

20.
Cell Host Microbe ; 3(1): 48-57, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-18191794

RESUMO

Plant immunity frequently involves the recognition of pathogen-encoded avirulence (avr) factors by their corresponding plant resistance (R) proteins. This triggers the hypersensitive response (HR) where necrotic lesions formed at the site(s) of infection help restrict pathogen spread. HRT is an Arabidopsis R protein required for resistance to turnip crinkle virus (TCV). In a genetic screen for mutants compromised in the recognition of TCV's avr factor, we identified crt1 (compromised recognition of TCV), a mutant that prematurely terminates an ATPase protein. Following TCV infection, crt1 developed a spreading HR and failed to control viral replication and spread. crt1 also suppressed HR-like cell death induced by ssi4, a constitutively active R protein, and by Pseudomonas syringae carrying avrRpt2. Furthermore, CRT1 interacts with HRT, SSI4, and two other R proteins, RPS2 and Rx. These data identify CRT1 as an important mediator of defense signaling triggered by distinct classes of R proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Carmovirus/patogenicidade , Endodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Sequência Consenso , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Dados de Sequência Molecular , Mutação , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA