Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biochem Biophys Res Commun ; 646: 8-18, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36696754

RESUMO

A severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) surrogate virus neutralization test (sVNT) was used to determine the degree of inhibition of binding between human angiotensin converting enzyme 2 (hACE2) and the receptor binding domain (RBD) of spike protein by neutralizing antibodies in a biosafety level 2 facility. Here, to improve the sensitivity and specificity of the commercial sVNT, we developed a new biotin based sVNT using biotinylated RBD and HRP conjugated streptavidin instead of HRP conjugated RBD for direct detection in an ELISA assay that strongly correlated to the FDA approved cPass sVNT commercial kit (R2 = 0.8521) and pseudo virus neutralization test (R2 = 0.9006) (pVNT). The biotin based sVNT was evaluated in 535 postvaccination serum samples corresponding to second and third boosts of AZD1222 and BNT162b2 vaccines of the wild type strain. We confirmed that the neutralizing antibodies against SARS-CoV-2 variants in second vaccination sera decreased after a median of 141.5 days. Furthermore, vaccination sera from BNT162b2-BNT162b2 vaccines maintained neutralizing antibodies for longer than those of AZD1222 only vaccination. In addition, both vaccines maintained high neutralizing antibodies in third vaccination sera against Omicron BA.2 after a median of 27 days, but neutralizing antibodies significantly decreased after a median of 141.5 days. Along with the cPass sVNT commercial kit, biotin based sVNTs may also be suitable for specifically detecting neutralizing antibodies against multiple SARS-CoV-2 variants; however, to initially monitor the neutralizing antibodies in vaccinated sera using high throughput screening, conventional PRNT could be replaced by sVNT to circumvent the inconvenience of a long test time.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Biotina , Vacina BNT162 , ChAdOx1 nCoV-19 , Testes de Neutralização , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
2.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36634813

RESUMO

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Assuntos
COVID-19 , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Mesocricetus , Modelos Animais de Doenças
3.
Arch Virol ; 167(3): 871-879, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35137250

RESUMO

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Other coronaviruses (CoVs) can also infect humans, although the majority cause only mild respiratory symptoms. Because early diagnosis of SARS-CoV-2 is critical for preventing further transmission events and improving clinical outcomes, it is important to be able to distinguish SARS-CoV-2 from other SARS-related CoVs in respiratory samples. Therefore, we developed and evaluated a novel reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the genes encoding the spike (S) and membrane (M) proteins to enable the rapid identification of SARS-CoV-2, including several new circulating variants and other emerging SARS-like CoVs. By analysis of in vitro-transcribed mRNA, we established multiplex RT-qPCR assays capable of detecting 5 × 10° copies/reaction. Using RNA extracted from cell culture supernatants, our multiple simultaneous SARS-CoV-2 assays had a limit of detection of 1 × 10° TCID50/mL and showed no cross-reaction with human CoVs or other respiratory viruses. We also validated our method using human clinical samples from patients with COVID-19 and healthy individuals, including nasal swab and sputum samples. This novel one-step multiplex RT-qPCR assay can be used to improve the laboratory diagnosis of human-pathogenic CoVs, including SARS-CoV-2, and may be useful for the identification of other SARS-like CoVs of zoonotic origin.


Assuntos
COVID-19 , COVID-19/diagnóstico , Técnicas de Laboratório Clínico , Estudos de Viabilidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Sensibilidade e Especificidade
4.
Bioorg Med Chem ; 68: 116862, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691131

RESUMO

Hepatitis B virus (HBV) infection is a serious worldwide health problem causing liver cirrhosis and hepatocellular carcinoma. The development of novel therapeutics targeting distinct steps of the HBV life cycle and combination therapy with approved drugs (i.e., nucleot(s)ides, interferon-α) are considered effective strategies for curing HBV. Among these strategies is the development of entry inhibitors that interfere with the host entry step of HBV to prevent viral infection and transmission. Herein, we generated a novel library of cyclosporin O (CsO) derivatives that incorporate peptoid side chains. Twenty-two CsO derivatives were evaluated for membrane permeability, cytotoxicity, and in vitro HBV entry inhibitory activity. The lead compound (i.e., compound 21) showed the greatest potency in the in vitro HBV entry inhibition assay (IC50 = 0.36 ± 0.01 µM) with minimal cytotoxicity. Our peptide-peptoid hybrid CsO scaffold can readily expand chemical diversity and is applicable for screening various targets requiring macrocyclic chemical entities.


Assuntos
Hepatite B , Neoplasias Hepáticas , Peptoides , Simportadores , Antivirais/farmacologia , Antivirais/uso terapêutico , Ciclosporinas , Hepatite B/tratamento farmacológico , Vírus da Hepatite B , Humanos , Imidazóis , Neoplasias Hepáticas/tratamento farmacológico , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/farmacologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/uso terapêutico , Peptoides/metabolismo , Peptoides/farmacologia , Sulfonamidas , Simportadores/metabolismo , Tiofenos , Internalização do Vírus
5.
Curr Microbiol ; 78(11): 3835-3842, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34546415

RESUMO

Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic (HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential threats to human and animal health.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Aviária , Animais , Galinhas , Feminino , Genes Virais , Humanos , Influenza Aviária/epidemiologia , Aves Domésticas , Vietnã
6.
Hepatology ; 68(5): 1851-1864, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29672884

RESUMO

Dyskerin pseudouridine synthase 1 (DKC1) is a conserved gene encoding the RNA-binding protein dyskerin, which is an essential component of the telomerase holoenzyme. DKC1 up-regulation is frequently observed in many different human cancers including hepatocellular carcinoma (HCC); however, its regulatory mechanisms remain unclear. Thus, we investigated the regulatory mechanism of DKC1 in HCC progression. We found that protein-disulfide isomerase-associated 3 (PDIA3) interacted with the DKC1 regulatory DNA in HCC cells but not in HCC cells with elevated reactive oxygen species (ROS) levels, using liquid chromatographic-tandem mass spectrometric analysis after isolating the DKC1 regulatory region binding proteins. PDIA3 repressed DKC1 expression in HCC cells by recognizing the G-quadruplex DNA at the DKC1 location. However, oxidative modification of PDIA3 induced by ROS redistributed this protein into the cytosolic regions, which stimulated DKC1 expression. We also identified Met338 in PDIA3 as the oxidatively modified residue and validated the effect of oxidative modification using an ectopic expression system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 knock-in system, and a xenograft mouse model. We observed that oxidatively modified PDIA3 promoted DKC1-mediated malignancy and survival of HCC cells in vitro and in vivo. HCC tissues showed a positive association with ROS, cytoplasmic PDIA3, and nuclear DKC1 levels. HCC patients with high PDIA3 protein and DKC1 mRNA levels also displayed reduced recurrence-free survival rates. Cumulatively, the results showed that cytoplasmic PDIA3 activity could be essential in raising DKC1 expression in HCC progression and predicting poor prognoses in HCC patients. Conclusion: Our study indicates that the elevated ROS levels in HCC modulate cytoplasmic PDIA3 levels, resulting in HCC cell survival through DKC1 up-regulation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/mortalidade , Camundongos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida
7.
Proc Natl Acad Sci U S A ; 113(31): 8771-6, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439875

RESUMO

The role of cereblon (CRBN) in T cells is not well understood. We generated mice with a deletion in Crbn and found cereblon to be an important antagonist of T-cell activation. In mice lacking CRBN, CD4(+) T cells show increased activation and IL-2 production on T-cell receptor stimulation, ultimately resulting in increased potassium flux and calcium-mediated signaling. CRBN restricts T-cell activation via epigenetic modification of Kcna3, which encodes the Kv1.3 potassium channel required for robust calcium influx in T cells. CRBN binds directly to conserved DNA elements adjacent to Kcna3 via a previously uncharacterized DNA-binding motif. Consequently, in the absence of CRBN, the expression of Kv1.3 is derepressed, resulting in increased Kv1.3 expression, potassium flux, and CD4(+) T-cell hyperactivation. In addition, experimental autoimmune encephalomyelitis in T-cell-specific Crbn-deficient mice was exacerbated by increased T-cell activation via Kv1.3. Thus, CRBN limits CD4(+) T-cell activation via epigenetic regulation of Kv1.3 expression.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Epigênese Genética , Canal de Potássio Kv1.3/genética , Ativação Linfocitária/genética , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linfócitos T CD4-Positivos/citologia , Cálcio/metabolismo , Células Cultivadas , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica/métodos , Canal de Potássio Kv1.3/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Potássio/metabolismo
8.
Bioorg Med Chem ; 24(21): 5357-5367, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647370

RESUMO

The quinolinone skeleton has been utilized to develop various mechanism-based immune modulators. However, the effects of quinolinone derivatives on the release of T cell-associated interleukin-2 (IL-2) have not been established. In this study, a series of novel quinolinone derivatives was synthesized, and their immunosuppressive activity was evaluated by measuring suppression of IL-2 release from activated Jurkat T cells. Optimizing the three side chains around the quinolinone skeleton revealed the most active compound: 11l. This compound exhibits potent inhibitory activity toward IL-2 release in both 12-o-tetradecanoylphorbol-13-acetate (PMA)/A23187 (ionomycin) (IC50=80±10nM) and anti-CD3/CD28-stimulated Jurkat T cells (83% inhibition at 10µM) without cytotoxic effects. Further investigation into the underlying mechanism of 11l indicated the suppression of NF-κB and nuclear factor of activated T cells (NFAT) promoter activities in Jurkat T cells.


Assuntos
Descoberta de Drogas , Interleucina-2/antagonistas & inibidores , Quinolonas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-2/metabolismo , Células Jurkat , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
9.
J Immunol ; 190(9): 4508-15, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23530144

RESUMO

Strong NF-κB activation requires ligation of both the CD28 coreceptor and TCR. Phosphoinositide-dependent kinase 1 (PDK1) acts as a scaffold by binding both protein kinase Cθ (PKCθ) and CARMA1, and is therefore essential for signaling to NF-κB. In this article, we demonstrate the importance of PDK1 Thr(513) phosphorylation in regulating the intermolecular organization of PDK1 homodimers. Thr(513) is directly involved in heterotypic PDK1 homodimer formation, in which binding is mediated through the pleckstrin homology (PH) and kinase domains. Upon activation, phosphorylated Thr(513) instead mediates homotypic intermolecular binding through the PH domains. Consequently, cell-permeable peptides with a Thr(513) to Ile derivative (protein transduction domain [PTD]-PDK1-Thr(513)-Ile) bound the kinase domain, whereas a Thr(513)-to-Asp peptide (PTD-PDK1-Thr(513)-Asp) bound the PH domain. PTD-PDK1-Thr(513)-Ile blocked binding between PDK1 and PKCθ, phosphorylation of PKCθ Thr(538), and activation of both NF-κB and AKT. In contrast, PTD-PDK1- Thr(513)-Asp selectively inhibited binding between PDK1 and CARMA1, and blocked TCR/CD28-induced NF-κB activation. Therefore, Thr(513) phosphorylation regulates a critical intermolecular switch governing PDK1 homodimer structure and the capacity to interact with downstream signaling pathway components. Given the pleiotropic functions of PDK1, these data may open the door to the development of immunosuppressive therapies that selectively target the PDK1 to NF-κB pathway in T cell activation.


Assuntos
NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Proteínas Sanguíneas/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dimerização , Guanilato Ciclase/imunologia , Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Interleucina-2/imunologia , Interleucina-2/metabolismo , Isoenzimas/imunologia , Isoenzimas/metabolismo , Células Jurkat , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/imunologia , Fosforilação/imunologia , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/imunologia , Treonina/imunologia , Treonina/metabolismo
10.
Immunology ; 143(4): 550-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24913005

RESUMO

The roles of Notch1 and Notch2 in T-cell function have been well studied, but the functional roles of Notch in B cells have not been extensively investigated, except for Notch2 involvement in peripheral marginal zone B-cell differentiation. This study examined the roles of Notch1 in murine primary B cells. During B-cell activation by B-cell receptor ligation, Notch1 was up-regulated while Notch2 was not. In addition, Notch1 up-regulation itself did not contribute to the further activation of B cells, but the Notch ligand was important for Notch1-mediated further B-cell activation. Moreover, Notch1 deficiency significantly decreased B-cell activation and antibody secretion under the presence of Notch ligand. These data suggest that Notch1 is an important mediator for enhancing B-cell activation and antibody secretion by Notch ligand.


Assuntos
Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação Linfocitária/imunologia , Receptor Notch1/metabolismo , Animais , Linfócitos B/citologia , Diferenciação Celular/genética , Linhagem Celular , Deleção de Genes , Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Ligantes , Ativação Linfocitária/genética , Camundongos , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Receptor Notch1/agonistas , Receptor Notch1/química , Receptor Notch1/genética , Receptores de Antígenos de Linfócitos B/metabolismo
11.
Arch Virol ; 159(10): 2549-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24810099

RESUMO

HBx acts as a multifunctional regulator that modulates various cellular responses, which can lead to development and progression of hepatocellular carcinoma (HCC). Here, we show that the HBx protein is also localized to peroxisomes, and this increases cellular reactive oxygen species (ROS) to levels that are higher than when HBx is localized to other organelles. The elevated ROS strongly activated nuclear factor (NF)-κB. In addition, the peroxisome-localized HBx increased the expressions of matrix metalloproteinases and decreased the expression of E-cadherin, which increased the invasive ability of HCC cells. Thus, a specific distribution of HBx to peroxisomes may contribute to HCC progression by increasing the invasive ability of HCC cells through elevation of the cellular ROS level.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Caderinas/biossíntese , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Progressão da Doença , Células HEK293 , Células Hep G2 , Hepatite B/virologia , Vírus da Hepatite B/patogenicidade , Humanos , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 7 da Matriz/biossíntese , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/patologia , NF-kappa B/biossíntese , Invasividade Neoplásica , RNA Mensageiro/biossíntese , Proteínas Virais Reguladoras e Acessórias
12.
Heliyon ; 10(6): e28326, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38532995

RESUMO

The various strains of influenza virus cause respiratory symptoms in humans every year and annual vaccinations are recommended. Due to its RNA-type genes and segmented state, it belongs to a virus that mutates frequently with antigenic drift and shift, giving rise to various strains. Each year, the World Health Organization identifies the epidemic strains and operates a global surveillance system to suggest the viral composition for the influenza vaccine. Influenza viruses, which have multiple viral strains, are produced in the format of multivalent vaccine. However, the multivalent vaccine has a possibility of causing immune interference by introducing multiple strain-specific antigens in a single injection. Therefore, evaluating immune interference phenomena is essential when assessing multivalent vaccines. In this study, the protective ability and immunogenicity of multivalent and monovalent vaccines were evaluated in mice to assess immune interference in the multivalent vaccine. Monovalent and multivalent vaccines were manufactured using the latest strain of the 2022-2023 seasonal influenza virus selected by the World Health Organization. The protective abilities of both types of vaccines were tested through hemagglutination inhibition test. The immunogenicity of multivalent and monovalent vaccines were tested through enzyme-linked immunosorbent assay to measure the cellular and humoral immunity expression rates. As a result of the protective ability and immunogenicity test, higher level of virus neutralizing ability and greater amount of antibodies in both IgG1 and IgG2 were confirmed in the multivalent vaccine. No immune interference was found to affect the protective capacity and immune responses of the multivalent vaccines.

14.
Sci Rep ; 13(1): 43, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593298

RESUMO

Notch1 plays important roles in T cell development and is highly expressed in activated CD4+ T cells. However, the underlying mechanism of Notch1 transcription in T cells has not been fully characterized. Therefore, we aimed to determine how Notch1 expression is regulated during the activation of CD4+ T cells. Both the surface expression and mRNA transcription of Notch1 were significantly higher in activated CD4+ T cells, but the inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 or deletion of the Pdk1 gene impaired this upregulation of Notch1. Interrogation of the Notch1 promoter region using serially deleted Notch1 promoter reporters revealed that the - 300 to - 270 region is crucial for its transcription in activated T cells. In addition, we found that nuclear factor (NF)-κB subunits containing RelA bind directly to this promoter region, thereby upregulating transcription. In addition, inhibition of NF-κB by SN50 impaired upregulation of Notch1 surface protein and mRNA in activated CD4+ T cells. Thus, we provide evidence that Notch1 transcription in activated CD4+ T cells is upregulated via the PI3K-PDK1-NF-κB signaling pathway.


Assuntos
NF-kappa B , Fosfatidilinositol 3-Quinases , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação da Expressão Gênica , Fator de Transcrição RelA/metabolismo , Linfócitos T/metabolismo , Ativação Transcricional , Receptor Notch1/genética , Receptor Notch1/metabolismo , RNA Mensageiro/metabolismo
15.
Front Microbiol ; 14: 1256090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779710

RESUMO

Subtype H10 avian influenza viruses (AIV) are distributed worldwide in wild aquatic birds, and can infect humans and several other mammalian species. In the present study, we investigated the naturally mutated PB2 gene in A/aquatic bird/South Korea/SW1/2018 (A/SW1/18, H10N1), isolated from wild birds during the 2018-2019 winter season. This virus was originally found in South Korea, and is similar to isolates from mainland China and Mongolia. It had low pathogenicity, lacked a multi-basic cleavage site, and showed a binding preference for α2,3-linked sialic acids. However, it can infect mice, causing severe disease and lung pathology. SW1 was also transmitted by direct contact in ferrets, and replicated in the respiratory tract tissue, with no evidence of extrapulmonary spread. The pathogenicity and transmissibility of SW1 in mouse and ferret models were similar to those of the pandemic strain A/California/04/2009 (A/CA/04, H1N1). These factors suggest that subtype H10 AIVs have zoonotic potential and may transmit from human to human, thereby posing a potential threat to public health. Therefore, the study highlights the urgent need for closer monitoring of subtype H10 AIVs through continued surveillance of wild aquatic birds.

16.
Viruses ; 15(9)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37766351

RESUMO

Since its initial report in Vietnam in early 2019, the African swine fever (ASF), a highly lethal and severe viral swine disease worldwide, continues to cause outbreaks in other Southeast Asian countries. This study analyzed and compared the genomic sequences of ASF viruses (ASFVs) during the first outbreak in Hung Yen (VN/HY/2019-ASFV1) and Quynh Phu provinces (VN/QP/2019-ASFV1) in Vietnam in 2019, and the subsequent outbreak in Hung Yen (VN/HY/2022-ASFV2) in 2022, to those of other ASFV strains. VN/HY/2019-ASFV1, VN/QP/2019-ASFV1, and VN/HY/2022-ASFV2 genomes were 189,113, 189,081, and 189,607 bp in length, encoding 196, 196, and 203 open reading frames (ORFs), respectively. VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 shared a 99.91-99.99% average nucleotide identity with genotype II strains. Variations were identified in 28 ORFs in VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 compared to 20 ASFV strains, and 16 ORFs in VN/HY/2022-ASFV2 compared to VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1. Vietnamese ASFV genomes were classified as IGR II variants between the I73R and I329L genes, with two copy tandem repeats between the A179L and A137R genes. A phylogenetic analysis based on the whole genomes of 27 ASFV strains indicated that the Vietnamese ASFV strains are genetically related to Estonia 2014, ASFV-SY18, and Russia/Odintsovo_02/14. These results reveal the complete genome sequences of ASFV circulating during the first outbreak in 2019, providing important insights into understanding the evolution, transmission, and genetic variation of ASFV in Vietnam.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Vietnã/epidemiologia , Febre Suína Africana/epidemiologia , Filogenia , Surtos de Doenças
17.
Microorganisms ; 11(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38004769

RESUMO

African swine fever (ASF) emerged in domestic pigs and wild boars in China in 2018 and rapidly spread to neighboring Asian countries. Currently, no effective vaccine or diagnostic tests are available to prevent its spread. We developed a robust quadruple recombinant-protein-based indirect enzyme-linked immunosorbent assay (QrP-iELISA) using four antigenic proteins (CD2v, CAP80, p54, and p22) to detect ASF virus (ASFV) antibodies and compared it with a commercial kit (IDvet) using ASFV-positive and -negative serum samples. The maximum positive/negative value was 24.033 at a single antigen concentration of 0.25 µg/mL and quadruple ASFV antigen combination of 1 µg/mL at a 1:100 serum dilution. Among 70 ASFV-positive samples, 65, 67, 65, 70, 70, and 14 were positive above the cut-offs of 0.121, 0.121, 0.183, 0.065, 0.201, and 0.122, for CD2v, CAP80, p54, p22-iELISA, QrP-iELISA, and IDvet, respectively, with sensitivities of 92.9%, 95.7%, 92.9%, 100%, 100%, and 20%, respectively, all with 100% specificity. The antibody responses in QrP-iELISA and IDvet were similar in pigs infected with ASFV I. QrP-iELISA was more sensitive than IDvet for early antibody detection in pigs infected with ASFV II. These data provide a foundation for developing advanced ASF antibody detection kits critical for ASF surveillance and control.

18.
Transbound Emerg Dis ; 69(5): e3297-e3304, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35648595

RESUMO

The ongoing coronavirus disease 2019 pandemic and its overlap with the influenza season lead to concerns over severe disease caused by the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infections. Using a Syrian hamster co-infection model with SARS-CoV-2 and the pandemic influenza virus A/California/04/2009 (H1N1), we found (a) more severe disease in co-infected animals, compared to those infected with influenza virus alone but not SARS-CoV-2 infection alone; (b) altered haematological changes in only co-infected animals and (c) altered influenza virus tropism in the respiratory tracts of co-infected animals. Overall, our study revealed that co-infection with SARS-CoV-2 and influenza virus is associated with altered disease severity and tissue tropism, as well as haematological changes, compared to infection with either virus alone.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Doenças dos Roedores , Animais , COVID-19/veterinária , Coinfecção/veterinária , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2 , Tropismo Viral
19.
Lab Anim Res ; 38(1): 17, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765097

RESUMO

BACKGROUND: As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. RESULTS: In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. CONCLUSIONS: This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

20.
J Med Chem ; 64(9): 5500-5518, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33887912

RESUMO

Core assembly modulators of viral capsid proteins have been developed as an effective treatment of chronic hepatitis B virus (HBV) infection. In this study, we synthesized novel potent pyrimidine derivatives as core assembly modulators, and their antiviral effects were evaluated in in vitro and in vivo biological experiments. One of the synthesized derivatives, compound 23h (R1 = MeSO2, R2 = 1-piperidin-4-amine, R3 = 3-Cl-4-F-aniline) displayed potent inhibitory effects in the in vitro assays (52% inhibition in the protein-based assay at 100 nM and an IC50 value of 181 nM in the serum HBV DNA quantification assay). Moreover, treatment with compound 23h for 5 weeks significantly decreased serum levels of HBV DNA levels (3.35 log reduction) in a human liver-chimeric uPA/SCID mouse model, and these effects were significantly increased when 23h was combined with tenofovir, a nucleotide analogue inhibitor of reverse transcriptase used for the treatment of HBV infection.


Assuntos
Antivirais/química , Proteínas do Capsídeo/metabolismo , Vírus da Hepatite B/fisiologia , Pirimidinas/química , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Sítios de Ligação , Proteínas do Capsídeo/química , DNA Viral/sangue , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Meia-Vida , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Simulação de Acoplamento Molecular , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade , Tenofovir/metabolismo , Tenofovir/farmacologia , Montagem de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA