Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(3): 601-614.e13, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942922

RESUMO

Faithful chromosome segregation in meiosis requires crossover (CO) recombination, which is regulated to ensure at least one CO per homolog pair. We investigate the failure to ensure COs in juvenile male mice. By monitoring recombination genome-wide using cytological assays and at hotspots using molecular assays, we show that juvenile mouse spermatocytes have fewer COs relative to adults. Analysis of recombination in the absence of MLH3 provides evidence for greater utilization in juveniles of pathways involving structure-selective nucleases and alternative complexes, which can act upon precursors to generate noncrossovers (NCOs) at the expense of COs. We propose that some designated CO sites fail to mature efficiently in juveniles owing to inappropriate activity of these alternative repair pathways, leading to chromosome mis-segregation. We also find lower MutLγ focus density in juvenile human spermatocytes, suggesting that weaker CO maturation efficiency may explain why younger men have a higher risk of fathering children with Down syndrome.


Assuntos
Envelhecimento , Segregação de Cromossomos , Meiose , Recombinação Genética , Espermatócitos/metabolismo , Animais , Aberrações Cromossômicas , Reparo do DNA , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Espermatócitos/citologia
2.
Mol Cell ; 83(16): 2941-2958.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595556

RESUMO

Crossovers (COs), the exchange of homolog arms, are required for accurate chromosome segregation during meiosis. Studies in yeast have described the single-end invasion (SEI) intermediate: a stabilized 3' end annealed with the homolog as the first detectible CO precursor. SEIs are thought to differentiate into double Holliday junctions (dHJs) that are resolved by MutLgamma (MLH1/MLH3) into COs. Currently, we lack knowledge of early steps of mammalian CO recombination or how intermediates are differentiated in any organism. Using comprehensive analysis of recombination in thirteen different genetic conditions with varying levels of compromised CO resolution, we infer CO precursors include asymmetric SEI-like intermediates and dHJs in mouse. In contrast to yeast, MLH3 is structurally required to differentiate CO precursors into dHJs. We verify conservation of aspects of meiotic recombination and show unique features in mouse, providing mechanistic insight into CO formation.


Assuntos
Meiose , Saccharomyces cerevisiae , Animais , Camundongos , Saccharomyces cerevisiae/genética , Meiose/genética , Segregação de Cromossomos/genética , DNA Cruciforme/genética , Mamíferos
3.
Mol Cell ; 69(5): 725-727, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499130

RESUMO

PRDM9 determines the localization of meiotic recombination hotspots, which are associated with histone H3 methylation. It is not known whether PRDM9's methyltransferase activity is required or how some PRDM9 alleles can dominate the distribution of hotspots over other alleles. Diagouraga, Clément, and colleagues (2018) show that methyltransferase activity is required for hotspot localization and that this activity is additive in combination, suggesting that the dominance of particular alleles is simply proportional to the frequency of targeted sites.


Assuntos
Sítios de Ligação , Metiltransferases , DNA , Metilação , Sulfonamidas
4.
PLoS Genet ; 12(1): e1005777, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26789196

RESUMO

Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis.


Assuntos
Diferenciação Celular/genética , Células Epiteliais/metabolismo , NF-kappa B/genética , Fator de Transcrição STAT3/biossíntese , Animais , Antígenos CD40/genética , Desenvolvimento Embrionário/genética , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Ativação Linfocitária , Camundongos , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/crescimento & desenvolvimento , Timo/metabolismo , Transgenes
5.
Nat Struct Mol Biol ; 26(3): 164-174, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778236

RESUMO

In meiotic prophase, chromosomes are organized into compacted loop arrays to promote homolog pairing and recombination. Here, we probe the architecture of the mouse spermatocyte genome in early and late meiotic prophase using chromosome conformation capture (Hi-C). Our data support the established loop array model of meiotic chromosomes, and infer loops averaging 0.8-1.0 megabase pairs (Mb) in early prophase and extending to 1.5-2.0 Mb in late prophase as chromosomes compact and homologs undergo synapsis. Topologically associating domains (TADs) are lost in meiotic prophase, suggesting that assembly of the meiotic chromosome axis alters the activity of chromosome-associated cohesin complexes. While TADs are lost, physically separated A and B compartments are maintained in meiotic prophase. Moreover, meiotic DNA breaks and interhomolog crossovers preferentially form in the gene-dense A compartment, revealing a role for chromatin organization in meiotic recombination. Finally, direct detection of interhomolog contacts genome-wide reveals the structural basis for homolog alignment and juxtaposition by the synaptonemal complex.


Assuntos
Pareamento Cromossômico/genética , Recombinação Homóloga/genética , Prófase Meiótica I/genética , Espermatogênese/genética , Animais , Cromatina/metabolismo , Cromossomos/metabolismo , Quebras de DNA , Genoma/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatócitos/citologia , Complexo Sinaptonêmico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA