Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 146(3): 408-20, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816276

RESUMO

The nutrient- and growth factor-responsive kinase mTOR complex 1 (mTORC1) regulates many processes that control growth, including protein synthesis, autophagy, and lipogenesis. Through unknown mechanisms, mTORC1 promotes the function of SREBP, a master regulator of lipo- and sterolgenic gene transcription. Here, we demonstrate that mTORC1 regulates SREBP by controlling the nuclear entry of lipin 1, a phosphatidic acid phosphatase. Dephosphorylated, nuclear, catalytically active lipin 1 promotes nuclear remodeling and mediates the effects of mTORC1 on SREBP target gene, SREBP promoter activity, and nuclear SREBP protein abundance. Inhibition of mTORC1 in the liver significantly impairs SREBP function and makes mice resistant, in a lipin 1-dependent fashion, to the hepatic steatosis and hypercholesterolemia induced by a high-fat and -cholesterol diet. These findings establish lipin 1 as a key component of the mTORC1-SREBP pathway.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Fosfatidato Fosfatase , Serina-Treonina Quinases TOR
2.
Cell ; 137(5): 873-86, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19446321

RESUMO

The mTORC1 and mTORC2 pathways regulate cell growth, proliferation, and survival. We identify DEPTOR as an mTOR-interacting protein whose expression is negatively regulated by mTORC1 and mTORC2. Loss of DEPTOR activates S6K1, Akt, and SGK1, promotes cell growth and survival, and activates mTORC1 and mTORC2 kinase activities. DEPTOR overexpression suppresses S6K1 but, by relieving feedback inhibition from mTORC1 to PI3K signaling, activates Akt. Consistent with many human cancers having activated mTORC1 and mTORC2 pathways, DEPTOR expression is low in most cancers. Surprisingly, DEPTOR is highly overexpressed in a subset of multiple myelomas harboring cyclin D1/D3 or c-MAF/MAFB translocations. In these cells, high DEPTOR expression is necessary to maintain PI3K and Akt activation and a reduction in DEPTOR levels leads to apoptosis. Thus, we identify a novel mTOR-interacting protein whose deregulated overexpression in multiple myeloma cells represents a mechanism for activating PI3K/Akt signaling and promoting cell survival.


Assuntos
Sobrevivência Celular , Mieloma Múltiplo/metabolismo , Proteínas Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Ciclina D1/metabolismo , Ciclina D3 , Ciclinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Mol Cell ; 38(5): 768-74, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20542007

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) regulates cell growth in response to the nutrient and energy status of the cell, and its deregulation is common in human cancers. Little is known about the overall architecture and subunit organization of this essential signaling complex. We have determined the three-dimensional (3D) structure of the fully assembled human mTORC1 by cryo-electron microscopy (cryo-EM). Our analyses reveal that mTORC1 is an obligate dimer with an overall rhomboid shape and a central cavity. The dimeric interfaces are formed by interlocking interactions between the mTOR and raptor subunits. Extended incubation with FKBP12-rapamycin compromises the structural integrity of mTORC1 in a stepwise manner, leading us to propose a model in which rapamycin inhibits mTORC1-mediated phosphorylation of 4E-BP1 and S6K1 through different mechanisms.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Sirolimo/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Antibióticos Antineoplásicos/química , Linhagem Celular , Simulação por Computador , Microscopia Crioeletrônica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Moleculares , Complexos Multiproteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteína Regulatória Associada a mTOR , Sirolimo/química , Serina-Treonina Quinases TOR , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Fatores de Transcrição/genética
5.
J Biol Chem ; 287(13): 9742-9752, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22223645

RESUMO

An intensive recent effort to develop ATP-competitive mTOR inhibitors has resulted in several potent and selective molecules such as Torin1, PP242, KU63794, and WYE354. These inhibitors are being widely used as pharmacological probes of mTOR-dependent biology. To determine the potency and specificity of these agents, we have undertaken a systematic kinome-wide effort to profile their selectivity and potency using chemical proteomics and assays for enzymatic activity, protein binding, and disruption of cellular signaling. Enzymatic and cellular assays revealed that all four compounds are potent inhibitors of mTORC1 and mTORC2, with Torin1 exhibiting ∼20-fold greater potency for inhibition of Thr-389 phosphorylation on S6 kinases (EC(50) = 2 nM) relative to other inhibitors. In vitro biochemical profiling at 10 µM revealed binding of PP242 to numerous kinases, although WYE354 and KU63794 bound only to p38 kinases and PI3K isoforms and Torin1 to ataxia telangiectasia mutated, ATM and Rad3-related protein, and DNA-PK. Analysis of these protein targets in cellular assays did not reveal any off-target activities for Torin1, WYE354, and KU63794 at concentrations below 1 µM but did show that PP242 efficiently inhibited the RET receptor (EC(50), 42 nM) and JAK1/2/3 kinases (EC(50), 780 nM). In addition, Torin1 displayed unusually slow kinetics for inhibition of the mTORC1/2 complex, a property likely to contribute to the pharmacology of this inhibitor. Our results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 µM and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.


Assuntos
Inibidores Enzimáticos/farmacocinética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Trifosfato de Adenosina , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteômica/métodos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Anal Chem ; 82(15): 6643-51, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20614870

RESUMO

Here we report the use of capillary isoelectric focusing under native conditions for the separation of protein complex isoforms and subcomplexes. Using biologically relevant HIS-tag and FLAG-tag purified protein complexes, we demonstrate the separations of protein complex isoforms of the mammalian target of rapamycin complex (mTORC1 and 2) and the subcomplexes and different phosphorylation states of the Dam1 complex. The high efficiency capillary isoelectric focusing separation allowed for resolution of protein complexes and subcomplexes similar in size and biochemical composition. By performing separations with native buffers and reduced temperature (15 degrees C) we were able to maintain the complex integrity of the more thermolabile mTORC2 during isoelectric focusing and detection (<45 min). Increasing the separation temperature allowed us to monitor dissociation of the Dam1 complex into its subcomplexes (25 degrees C) and eventually its individual protein components (30 degrees C). The separation of two different phosphorylation states of the Dam1 complex, generated from an in vitro kinase assay with Mps1 kinase, was straightforward due to the large pI shift upon multiple phosphorylation events. The separation of the protein complex isoforms of mTORC, on the other hand, required the addition of a small pI range (4-6.5) of ampholytes to improve resolution and stability of the complexes. We show that native capillary isoelectric focusing is a powerful method for the difficult separations of large, similar, unstable protein complexes. This method shows potential for differentiation of protein complex isoform and subcomplex compositions, post-translational modifications, architectures, stabilities, equilibria, and relative abundances under biologically relevant conditions.


Assuntos
Focalização Isoelétrica/métodos , Complexos Multiproteicos/isolamento & purificação , Soluções Tampão , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Linhagem Celular , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Complexos Multiproteicos/química , Oligopeptídeos/química , Peptídeos/química , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Serina-Treonina Quinases TOR , Temperatura , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação , Viscosidade
8.
Cell Chem Biol ; 26(9): 1203-1213.e13, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31231029

RESUMO

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolic processes. Dysregulation of this kinase complex can result in a variety of human diseases. Rapamycin and its analogs target mTORC1 directly; however, chronic treatment in certain cell types and in vivo results in the inhibition of both mTORC1 and mTORC2. We have developed a high-throughput cell-based screen for the detection of phosphorylated forms of the mTORC1 (4E-BP1, S6K1) and mTORC2 (Akt) substrates and have identified and characterized a chemical scaffold that demonstrates a profile consistent with the selective inhibition of mTORC1. Stable isotope labeling of amino acids in cell culture-based proteomic target identification revealed that class I glucose transporters were the primary target for these compounds yielding potent inhibition of glucose uptake and, as a result, selective inhibition of mTORC1. The link between the glucose uptake and selective mTORC1 inhibition are discussed in the context of a yet-to-be discovered glucose sensor.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Fosforilação , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/análogos & derivados , Sirolimo/metabolismo , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 9(1): 548, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416044

RESUMO

The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HEK293 , Humanos , Células Jurkat , Células MCF-7 , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Bibliotecas de Moléculas Pequenas/química
10.
Cancer Res ; 76(24): 7168-7180, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913436

RESUMO

Aberrant activation of the PI3K/mTOR pathway is a common feature of many cancers and an attractive target for therapy, but resistance inevitably evolves as is the case for any cancer cell-targeted therapy. In animal tumor models, chronic inhibition of PI3K/mTOR initially inhibits tumor growth, but over time, tumor cells escape inhibition. In this study, we identified a context-dependent mechanism of escape whereby tumor cells upregulated the proto-oncogene transcriptional regulators c-MYC and YAP1. This mechanism was dependent on both constitutive ERK activity as well as inhibition of the stress kinase p38. Inhibition of p38 relieved proliferation arrest and allowed upregulation of MYC and YAP through stabilization of CREB. These data provide new insights into cellular signaling mechanisms that influence resistance to PI3K/mTOR inhibitors. Furthermore, they suggest that therapies that inactivate YAP or MYC or augment p38 activity could enhance the efficacy of PI3K/mTOR inhibitors. Cancer Res; 76(24); 7168-80. ©2016 AACR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Experimentais/patologia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Imunofluorescência , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Microscopia Confocal , Neoplasias Experimentais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Transcrição , Proteínas de Sinalização YAP
11.
Science ; 341(6144): 1236566, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23888043

RESUMO

The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.


Assuntos
Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Motivos de Aminoácidos , Aminoácidos/metabolismo , Animais , Linhagem Celular , Meios de Cultura , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Naftiridinas/farmacologia , Peptídeos/química , Fosforilação , Proteínas/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores
12.
Cancer Res ; 73(8): 2574-86, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23436801

RESUMO

mTOR is a highly conserved serine/threonine protein kinase that serves as a central regulator of cell growth, survival, and autophagy. Deregulation of the PI3K/Akt/mTOR signaling pathway occurs commonly in cancer and numerous inhibitors targeting the ATP-binding site of these kinases are currently undergoing clinical evaluation. Here, we report the characterization of Torin2, a second-generation ATP-competitive inhibitor that is potent and selective for mTOR with a superior pharmacokinetic profile to previous inhibitors. Torin2 inhibited mTORC1-dependent T389 phosphorylation on S6K (RPS6KB1) with an EC(50) of 250 pmol/L with approximately 800-fold selectivity for cellular mTOR versus phosphoinositide 3-kinase (PI3K). Torin2 also exhibited potent biochemical and cellular activity against phosphatidylinositol-3 kinase-like kinase (PIKK) family kinases including ATM (EC(50), 28 nmol/L), ATR (EC(50), 35 nmol/L), and DNA-PK (EC(50), 118 nmol/L; PRKDC), the inhibition of which sensitized cells to Irradiation. Similar to the earlier generation compound Torin1 and in contrast to other reported mTOR inhibitors, Torin2 inhibited mTOR kinase and mTORC1 signaling activities in a sustained manner suggestive of a slow dissociation from the kinase. Cancer cell treatment with Torin2 for 24 hours resulted in a prolonged block in negative feedback and consequent T308 phosphorylation on Akt. These effects were associated with strong growth inhibition in vitro. Single-agent treatment with Torin2 in vivo did not yield significant efficacy against KRAS-driven lung tumors, but the combination of Torin2 with mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor AZD6244 yielded a significant growth inhibition. Taken together, our findings establish Torin2 as a strong candidate for clinical evaluation in a broad number of oncologic settings where mTOR signaling has a pathogenic role.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia , Autofagia/efeitos dos fármacos , Benzimidazóis/farmacologia , Ligação Competitiva , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Cinética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Naftiridinas/administração & dosagem , Naftiridinas/química , Ligação Proteica , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética
13.
Methods Mol Biol ; 821: 447-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22125084

RESUMO

The mammalian Target of Rapamycin (mTOR)-mediated signaling transduction pathway has been observed to be deregulated in a wide variety of cancer and metabolic diseases. Despite extensive clinical development efforts, the well-known allosteric mTOR inhibitor rapamycin and structurally related rapalogs have failed to show significant single-agent antitumor efficacy in most types of cancer. This limited clinical success may be due to the inability of the rapalogs to maintain a complete blockade mTOR-mediated signaling. Therefore, numerous efforts have been initiated to develop ATP-competitive mTOR inhibitors that would block both mTORC1 and mTORC2 complex activity. Here, we describe our experimental approaches to develop Torin1 using a medium throughput cell-based screening assay and structure-guided drug design.


Assuntos
Trifosfato de Adenosina/metabolismo , Desenho de Fármacos , Ensaios de Triagem em Larga Escala/métodos , Naftiridinas/química , Inibidores de Proteínas Quinases/química , Proteínas/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Moleculares , Estrutura Molecular , Complexos Multiproteicos , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
14.
J Med Chem ; 54(5): 1473-80, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21322566

RESUMO

The mTOR mediated PI3K/AKT/mTOR signal transduction pathway has been demonstrated to play a key role in a broad spectrum of cancers. Starting from the mTOR selective inhibitor 1 (Torin1), a focused medicinal chemistry effort led to the discovery of an improved mTOR inhibitor 3 (Torin2), which possesses an EC(50) of 0.25 nM for inhibiting cellular mTOR activity. Compound 3 exhibited 800-fold selectivity over PI3K (EC(50): 200 nM) and over 100-fold binding selectivity relative to 440 other protein kinases. Compound 3 has significantly improved bioavailability (54%), metabolic stability, and plasma exposure relative to compound 1.


Assuntos
Aminopiridinas/síntese química , Antineoplásicos/síntese química , Naftiridinas/síntese química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Administração Oral , Aminopiridinas/farmacocinética , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Estabilidade de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Naftiridinas/farmacocinética , Naftiridinas/farmacologia , Relação Estrutura-Atividade
15.
Science ; 332(6035): 1317-22, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21659604

RESUMO

The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.


Assuntos
Proteína Adaptadora GRB10/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Humanos , Insulina/metabolismo , Espectrometria de Massas , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Naftiridinas/farmacologia , Fosfoproteínas/metabolismo , Fosforilação , Proteoma/metabolismo , Sirolimo/farmacologia
16.
J Med Chem ; 53(19): 7146-55, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20860370

RESUMO

The mTOR protein is a master regulator of cell growth and proliferation, and inhibitors of its kinase activity have the potential to become new class of anticancer drugs. Starting from quinoline 1, which was identified in a biochemical mTOR assay, we developed a tricyclic benzonaphthyridinone inhibitor 37 (Torin1), which inhibited phosphorylation of mTORC1 and mTORC2 substrates in cells at concentrations of 2 and 10 nM, respectively. Moreover, Torin1 exhibits 1000-fold selectivity for mTOR over PI3K (EC(50) = 1800 nM) and exhibits 100-fold binding selectivity relative to 450 other protein kinases. Torin1 was efficacious at a dose of 20 mg/kg in a U87MG xenograft model and demonstrated good pharmacodynamic inhibition of downstream effectors of mTOR in tumor and peripheral tissues. These results demonstrate that Torin1 is a useful probe of mTOR-dependent phenomena and that benzonaphthridinones represent a promising scaffold for the further development of mTOR-specific inhibitors with the potential for clinical utility.


Assuntos
Antineoplásicos/síntese química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Naftiridinas/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Nus , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Naftiridinas/farmacocinética , Naftiridinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Biol Chem ; 284(12): 8023-32, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19150980

RESUMO

The mammalian target of rapamycin (mTOR) kinase is the catalytic subunit of two functionally distinct complexes, mTORC1 and mTORC2, that coordinately promote cell growth, proliferation, and survival. Rapamycin is a potent allosteric mTORC1 inhibitor with clinical applications as an immunosuppressant and anti-cancer agent. Here we find that Torin1, a highly potent and selective ATP-competitive mTOR inhibitor that directly inhibits both complexes, impairs cell growth and proliferation to a far greater degree than rapamycin. Surprisingly, these effects are independent of mTORC2 inhibition and are instead because of suppression of rapamycin-resistant functions of mTORC1 that are necessary for cap-dependent translation and suppression of autophagy. These effects are at least partly mediated by mTORC1-dependent and rapamycin-resistant phosphorylation of 4E-BP1. Our findings challenge the assumption that rapamycin completely inhibits mTORC1 and indicate that direct inhibitors of mTORC1 kinase activity may be more successful than rapamycin at inhibiting tumors that depend on mTORC1.


Assuntos
Trifosfato de Adenosina/metabolismo , Antibióticos Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexos Multienzimáticos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autofagia/efeitos dos fármacos , Proteínas de Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fatores de Iniciação em Eucariotos , Imunossupressores/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multiproteicos , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas , Capuzes de RNA/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/antagonistas & inibidores
18.
Biochemistry ; 46(1): 145-55, 2007 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-17198384

RESUMO

The structure of tryptophan 2,3-dioxygenase (TDO) from Ralstonia metallidurans was determined at 2.4 A. TDO catalyzes the irreversible oxidation of l-tryptophan to N-formyl kynurenine, which is the initial step in tryptophan catabolism. TDO is a heme-containing enzyme and is highly specific for its substrate l-tryptophan. The structure is a tetramer with a heme cofactor bound at each active site. The monomeric fold, as well as the heme binding site, is similar to that of the large domain of indoleamine 2,3-dioxygenase, an enzyme that catalyzes the same reaction except with a broader substrate tolerance. Modeling of the putative (S)-tryptophan hydroperoxide intermediate into the active site, as well as substrate analogue and mutagenesis studies, are consistent with a Criegee mechanism for the reaction.


Assuntos
Heme/metabolismo , Ácido Quinolínico/metabolismo , Triptofano Oxigenase/química , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Glicina/genética , Glicina/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Dobramento de Proteína , Ralstonia/classificação , Ralstonia/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Mol Cell ; 25(6): 903-15, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17386266

RESUMO

The heterotrimeric mTORC1 protein kinase nucleates a signaling network that promotes cell growth in response to insulin and becomes constitutively active in cells missing the TSC1 or TSC2 tumor suppressors. Insulin stimulates the phosphorylation of S6K1, an mTORC1 substrate, but it is not known how mTORC1 kinase activity is regulated. We identify PRAS40 as a raptor-interacting protein that binds to mTORC1 in insulin-deprived cells and whose in vitro interaction with mTORC1 is disrupted by high salt concentrations. PRAS40 inhibits cell growth, S6K1 phosphorylation, and rheb-induced activation of the mTORC1 pathway, and in vitro it prevents the great increase in mTORC1 kinase activity induced by rheb1-GTP. Insulin stimulates Akt/PKB-mediated phosphorylation of PRAS40, which prevents its inhibition of mTORC1 in cells and in vitro. We propose that the relative strengths of the rheb- and PRAS40-mediated inputs to mTORC1 set overall pathway activity and that insulin activates mTORC1 through the coordinated regulation of both.


Assuntos
Insulina/fisiologia , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Fosforilação , Proteínas , Serina-Treonina Quinases TOR
20.
J Am Chem Soc ; 128(7): 2346-55, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16478190

RESUMO

D(2)O-grown crystals of yeast zinc porphyrin substituted cytochrome c peroxidase (ZnCcP) in complex with yeast iso-1-cytochrome c (yCc) diffract to higher resolution (1.7 A) and pack differently than H(2)O-grown crystals (2.4-3.0 A). Two ZnCcP's bind the same yCc (porphyrin-to-porphyrin separations of 19 and 29 A), with one ZnCcP interacting through the same interface found in the H(2)O crystals. The triplet excited-state of at least one of the two unique ZnCcP's is quenched by electron transfer (ET) to Fe(III)yCc (k(e) = 220 s(-1)). Measurement of thermal recombination ET between Fe(II)yCc and ZnCcP+ in the D(2)O-treated crystals has both slow and fast components that differ by 2 orders of magnitude (k(eb)(1) = 2200 s(-1), k(eb)(2) = 30 s(-1)). Back ET in H(2)O-grown crystals is too fast for observation, but soaking H(2)O-grown crystals in D(2)O for hours generates slower back ET, with kinetics similar to those of the D(2)O-grown crystals (k(eb)(1) = 7000 s(-1), k(eb)(2) = 100 s(-1)). Protein-film voltammetry of yCc adsorbed to mixed alkanethiol monolayers on gold electrodes shows slower ET for D(2)O-grown yCc films than for H(2)O-grown films (k(H) = 800 s(-1); k(D) = 540 s(-1) at 20 degrees C). Soaking H(2)O- or D(2)O-grown films in the counter solvent produces an immediate inverse isotope effect that diminishes over hours until the ET rate reaches that found in the counter solvent. Thus, D(2)O substitution perturbs interactions and ET between yCc and either CcP or electrode films. The effects derive from slow exchanging protons or solvent molecules that in the crystal produce only small structural changes.


Assuntos
Citocromo-c Peroxidase/química , Citocromos c/química , Metaloporfirinas/química , Proteínas de Saccharomyces cerevisiae/química , Zinco/química , Cristalização , Cristalografia por Raios X , Óxido de Deutério/química , Eletroquímica , Eletrodos , Cinética , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA