Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31719-31728, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38836704

RESUMO

Controlling miscibility between mixture components helps induce spontaneous phase separation into distinct domain sizes, thereby resulting in porous conjugated polymer (CP) films with different pore sizes after selective removal of auxiliary components. The miscibility of the CP mixture can be tailored by blending auxiliary model components designed by reflecting the difference in solubility parameters with the CP. The pore size increases as the difference in solubility parameters between the matrix CP and auxiliary component increases. Electrical properties are not critically damaged even after forming pores in the CP; however, excessive pore formation enables pores to spread to the vicinity of the dielectric layer of CP-based field-effect transistors (FETs), leading to partial loss of the carrier-transporting active channel in the FET. The porous structure is advantageous for not only increasing detection sensitivity but also improving the detection speed when porous CP films are applied to FET-based gas sensors for NO2 detection. The quantitative analysis of the response-recovery trend of the FET sensor using the Langmuir isotherm suggests that the response speed can be improved by more than 2.5 times with a 50-fold increase in NO2 sensitivity compared with pristine CP, which has no pores.

2.
Bioact Mater ; 34: 112-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204564

RESUMO

Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters. The ZW@CMC hydrogel demonstrates a superhydrophilic surface and good hygroscopic properties, which facilitate the formation of a stable hydration layer with low friction. The zwitterionic-functionalized CMC incorporates an additional negative sulfone group and increased negative charge density in the carboxyl group. This augmentation enhances electrostatic repulsion and facilitates the formation of hydration layer. This leads to exceptional prevention of blood clotting factor adhesion and inhibition of biofilm formation. Subsequently, the ZW@CMC hydrogel exhibited biocompatibility with tests of in vitro cytotoxicity, hemolysis, and catheter friction. Furthermore, in vivo tests of antithrombotic and systemic inflammation models with catheterization indicated that ZW@CMC has significant advantages for practical applications in cardiovascular-related and sepsis treatment. This study opens a new avenue for the development of chitosan-based multifunctional hydrogel for applications in blood-contacting devices.

3.
ACS Appl Mater Interfaces ; 15(24): 29643-29652, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37287192

RESUMO

To investigate the effect of miscibility between conjugated polymers (CPs) and Y6 on bulk-heterojunction (BHJ) type morphology, we propose three different CPs with similar chemical structures but different miscibility with Y6. After selectively removing Y6 from the CP/Y6 blend films, their interface morphology and interlocked dimensions are quantitatively compared using a square-wave model. As CP-Y6 miscibility increases, a higher intermixed interface is formed, providing an enlarged CP-Y6 interface area. Conversely, as the miscibility between CP and Y6 decreases, the height and width of the interlocked dimensions formed by phase separation gradually decrease and increase, respectively. Additionally, when the CP-Y6 interface morphology and electrical properties of the corresponding organic photovoltaic (OPV) device are correlated, as the highly intermixed CP-Y6 interface develops, the exciton dissociation efficiency increases owing to the reduced exciton diffusion length to be dissociated, but the bimolecular recombination tends to deteriorate simultaneously. Furthermore, if the miscibility between CP and Y6 is excessive, the formation of a charge transport pathway through phase separation is interrupted, deteriorating the charge transport capability in BHJ-type OPVs. However, it was confirmed that introducing F atoms into the conjugated backbone of CP can reduce the bimolecular recombination, providing ameliorated light-harvesting efficiency.

4.
ACS Appl Mater Interfaces ; 13(27): 31910-31918, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197091

RESUMO

Conjugated polymers (CPs) have provided versatile semiconducting implements for the development of soft electronic devices. When three CPs with the same conjugated framework but different side chains were adopted in the field-effect transistor (FET) sensor for NO2 detection, the response to NO2 showed an opposite tendency to the charge carrier mobility of each CP. Morphological and structural characterizations revealed that the flexible glycol side chain enhances NO2 affinity as well as prevents the formation of lamellar stacking of the CP chains, thereby providing routes for the facile diffusion of NO2. Additionally, theoretical calculations for CP-NO2 complex formation at the molecular level support the relatively low energy barrier for inter-chain transition of NO2 between the glycol-based conjugated frameworks, which implies the spontaneous internal diffusion of NO2 to the semiconductor-dielectric interface in the FET-based sensor. As a result, the CP with a NO2-affinitive morphology exhibited an exceptional sensitivity of 13.8%/ppb upon NO2 (100 ppb) exposure for 50 s and provided excellent selectivity to the FET-based sensor toward other environmentally abundant harmful gases, such as SO2, CO2, and NH3. In particular, the theoretic limit of detection reached down to 0.24 ppb, which is the lowest value ever reported for organic FET-based NO2 gas sensors.

5.
ACS Appl Mater Interfaces ; 12(1): 1151-1158, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31808674

RESUMO

Intercorrelation of thermoelectric properties of a doped conjugated semiconducting polymer (PIDF-BT) with charge carrier density, conductive morphology, and crystallinity are systematically investigated. Upon being doped with F4-TCNQ by the sequential doping method, PIDF-BT exhibited a high electrical conductivity over 210 S cm-1. The significant enhancement of electrical conductivity resulted from a high charge carrier density, which is attributed to the effective charge-transfer-based integer doping between PIDF-BT and dopant molecules. Based on the systemic characterization on the optical, electrical, and structural properties of doped PIDF-BT annealed at different temperatures, we investigated the characteristic correlations between thermoelectric properties of PIDF-BT films and their four-probe electrical conductivity, charge carrier density, and charge carrier mobility obtained from AC Hall effect measurements. This study revealed that exercising fine control over the crystallinity and conductive migration of the conjugated polymer films can be a strategic approach to suppressing the degradation of the Seebeck coefficient at high charge carrier density and ultimately to maximizing the power factors of organic thermoelectric devices.

6.
ACS Sens ; 3(9): 1831-1837, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30117732

RESUMO

Despite the usefulness of organochlorides as raw materials for organic synthesis, they cause several issues in the human body, such as hepatic dysfunction, tumor, and heavy damage to the central nervous system. Especially when organochlorides contain three or more chlorinated carbons, they tend to be more toxic to the human body possibly owing to relatively high reactivity. Several electron donors (TPCAs) are designed to devise a novel detection system for toxic organochlorides containing trichlorinated carbons, and the detection mechanism of the devised sensor system is systematically identified by EPR measurement and the analysis of the solution after the detection of chloroform, which is used as a model compound. Since the detection system simultaneously utilizes the radical-generation capability and the low LUMO level of the trichlorinated carbon, it provides high selectivity against most of the common organic compounds including other organochlorides containing mono- or dichlorinated carbons, and the outstanding selectivity of the designed sensor has been verified with Mirex composed of numerous chlorinated carbons. In addition, the detection system exhibits immediate sensing capability because only electron transfer and radical reaction are involved in the detection process. Finally, when diphosgene is detected with the devised sensing platform, a noticeable change in fluorescence intensities can be identified within 5 s even for a diphosgene concentration of less than 1 ppm.


Assuntos
Clorofórmio/análogos & derivados , Clorofórmio/análise , Elétrons , Fosgênio/análogos & derivados , Espectrometria de Fluorescência/métodos , Compostos de Anilina/química , Compostos de Anilina/efeitos da radiação , Clorofórmio/química , Espectroscopia de Ressonância de Spin Eletrônica , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Estrutura Molecular , Oxirredução , Fosgênio/análise , Fosgênio/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA