Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(19): e2206831, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811154

RESUMO

Improving electrical and optical properties is important in manufacturing high-efficiency solar cells. Previous studies focused on individual gettering and texturing methods to improve solar cell material quality and reduce reflection loss, respectively. This study presents a novel method called saw damage gettering with texturing that effectively combines both methods for multicrystalline silicon (mc-Si) wafers manufactured using the diamond wire sawing (DWS) method. Although mc-Si is not the Si material currently used in photovoltaic products, the applicability of this method using the mc-Si wafers as it contains all grain orientations is demonstrated. It utilizes saw damage sites on the wafer surfaces for gettering metal impurities during annealing. Additionally, it can crystallize amorphous silicon on wafer surfaces generated during the sawing process to allow conventional acid-based wet texturing. This texturing method and annealing for 10 min allow for the removal of metal impurities and effectively forms a textured DWS Si wafer. The results show that the open-circuit voltage (ΔVoc  = +29 mV), short-circuit current density (ΔJsc  = +2.5 mA cm-2 ), and efficiency (Δη = +2.1%) improved in the p-type passivated emitter and rear cells (p-PERC) manufactured using this novel method, as compared to those in the reference solar cells.

2.
Opt Express ; 30(20): 37085-37100, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258626

RESUMO

Color balance is a critical concept in the application of functional transparent polymers from a customer's standpoint. In this study, multiple polar and non-polar fluorescent dyes are embedded simultaneously for the first time in a polydimethylsiloxane (PDMS) polymer matrix. Five dyes successfully coexist with the optimum blending ratio. Furthermore, simultaneous dispersing of polar and non-polar dyes in the polymer is achieved. Absorption and photoluminescence characteristics of multiple fluorescent dyes in PDMS medium are systemically deconvoluted and discussed. The competitive average visible transmittance and color balance of synthesized multi-fluorescent dye embedded PDMS is demonstrated by high color rendering index and CIE color space coordinates close to the white point. Additionally, the luminescent solar concentrator device demonstrates improved power conversion efficiency and light utilization efficiency than the pure PDMS waveguide-based device. Moreover, the long-term storage stability is demonstrated successfully. The findings, therefore, demonstrate the applicability of multi-fluorescent dye embedded PDMS to advanced transparent devices.

3.
Macromol Rapid Commun ; 42(17): e2100305, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34347333

RESUMO

Tandem solar cells which are electrically connected with various photoactive materials have the potential to solve the current challenges by exceeding the theoretically limited efficiency of single junction solar cells. Here the first monolithic organic/silicon tandem cell is reported based on a semitransparent polymer on a crystalline silicon (c-Si) substrate. Herein, experimental results are presented for four-terminal (4-T) and monolithic two-terminal (2-T) organic/c-Si tandem cells using organic cells with an inverted n-i-p structure and c-Si cells with an n-type TOPCon structure with detailed analysis. The best 4-T tandem cell efficiency is 15.22%, and 2-T results show that the top (organic) and bottom (c-Si) cells are electrically connected by an open-circuit voltage over 1.4 V. Further, a simulated efficiency of over 20% using the organic/c-Si tandem is achieved, implying the tandem efficiency can be enhanced through further improvement of electric and optical characteristics with the optimization.


Assuntos
Energia Solar , Eletrodos , Polímeros , Silício , Luz Solar
4.
Opt Express ; 26(2): A30-A38, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402053

RESUMO

A hybrid silver nanowires (AgNWs)/indium tin oxide (ITO) contact was used as a transparent back-electrode to fabricate a bifacial CdS/CdTe thin-film solar cell. The photovoltaic properties of the bifacial CdS/CdTe thin-film solar cell were investigated under front and back illumination conditions. The hybrid AgNWs/ITO back contact changed the average conversion efficiency from 0.4% (front) and 3.5% (rear) to 8.1% (front) and 0.9% (rear), respectively, improving the sum efficiency from 3.9% (ITO-only) to 9.0%. Our research demonstrates the use of a nanowire network as a transparent electrode in CdS/CdTe thin-film solar cells for bifacial or tandem applications.

5.
Opt Express ; 24(10): A791-6, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409952

RESUMO

We demonstrated a flexible CdS/CdTe thin film solar cell with high specific power of approximately 254 W/kg. A flexible and ultra-light weight CdS/CdTe cell treated with pre-NP etch process exhibited high conversion efficiency of 13.56% in superstrate configuration. Morphological, structural and optical changes of CdS/CdTe thin films were characterized when pre-NP etch step was incorporated to the conventional post-deposition process. Improvement of photovoltaic parameters can be attributed to the removal of the oxide and the formation of Te-rich layer, which benefit the activation process. Pre-NP etched cell maintained their flexibility and performance under the repeated tensile strain of 0.13%. Our method can pave a way for manufacturing flexible CdS/CdTe thin film solar cells with high specific power for mobile and aerospace applications.

6.
ACS Appl Mater Interfaces ; 16(22): 28379-28390, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771721

RESUMO

This study proposes a titanium silicide (TiSi2) recombination layer for perovskite/tunnel oxide passivated contact (TOPCon) 2-T tandem solar cells as an alternative to conventional transparent conductive oxide (TCO)-based recombination layers. TiSi2 was formed while TiO2 was made by oxidizing a Ti film deposited on the p+-Si layer. The reaction formation mechanism was proposed based on the diffusion theory supported by experimental results. The optical and electrical properties of the TiSi2 layer were optimized by controlling the initial Ti thicknesses (5-100 nm). With the initial Ti of 50 nm, the lowest reflectance and highly ohmic contact between the TiO2 and p+-Si layers with a contact resistivity of 161.48 mΩ·cm2 were obtained. In contrast, the TCO interlayer shows Schottky behavior with much higher contact resistivities. As the recombination layer of TiSi2 and the electron transport layer of TiO2 are formed simultaneously, the process steps become simpler. Finally, the MAPbI3/TOPCon tandem device yielded an efficiency of 16.23%, marking the first reported efficiency for a device including a silicide-based interlayer.

7.
Discov Nano ; 18(1): 39, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37382848

RESUMO

To obtain high conversion efficiency, various carrier-selective contact structures are being applied to the silicon solar cell, and many related studies are being conducted. We conducted research on TiO2 to create an electron-selective contact structure that does not require a high-temperature process. Titanium metal was deposited using a thermal evaporator, and an additional oxidation process was conducted to form titanium oxide. The chemical compositions and phases of the titanium dioxide layers were analyzed by X-ray diffraction. The passivation effects of each titanium oxide layer were measured using the quasi-steady-state photoconductance. In this study, the layer properties were analyzed when TiO2 had a passivation effect on the silicon surface. The charge and interface defect densities of the layer were analyzed through CV measurements, and the passivation characteristics according to the TiO2 phase change were investigated. As a result, by applying optimized TiO2 layer thickness and annealing temperature conditions through the experiment for passivation to the cell-like structure, which is the structure before metal and electrode formation, an implied open-circuit voltage (iVoc) of 630 mV and an emitter saturation current density (J0) value of 60.4 fA/cm2 were confirmed.

8.
Adv Mater ; 32(51): e2002196, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33048400

RESUMO

Hybrid tandem solar cells offer the benefits of low cost and full solar spectrum utilization. Among the hybrid tandem structures explored to date, the most popular ones have four (simple stacking design) or two (terminal/tunneling layer addition design) terminal electrodes. Although the latter design is more cost-effective than the former, its widespread application is hindered by the difficulty of preparing an interface between two solar cell materials. The oldest approach to the in-series bonding of two or more bandgap solar cells relies on the introduction of a tunneling layer in multijunction III-V solar cells, but it has some limitations, e.g., the related materials/technologies are applicable only to III-V and certain other solar cells. Thus, alternative methods of realizing junction contacts based on the use of novel materials are highly sought after. Here, the strategies used to realize high-performance tandem cells are described, focusing on interface control in terms of bonding two or more solar cells for tandem approaches. The presented information is expected to aid the establishment of ideal methods of connecting two or more solar cells to obtain the highest performance for different solar cell choices with minimized energy loss through the interface.

10.
ACS Appl Mater Interfaces ; 12(32): 36082-36091, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664721

RESUMO

Fabrication of Cu(In,Ga)(S,Se)2 (CIGSSe) absorber films from environmentally friendly solutions under ambient air conditions for use in solar cells has shown promise for the low-cost mass production of CIGSSe solar cells. However, the limited power conversion efficiency (PCE) of these solar cells compared with their vacuum-processed counterparts has been a critical setback to their practical applications. This study aims to fabricate solution-processed CIGSSe solar cells with high PCEs by incorporation of Ag into the precursor layer of the CIGSSe absorber films. The results showed that Ag doping promoted grain growth by accelerating Se uptake, irrespective of the location within the CIGSSe film. Nevertheless, uniform Ag doping formed crevices that lowered the PCE of the cells, while centrally localizing the doped Ag prevented the formation of crevices, resulting in high PCEs up to 15.3%. Our results demonstrate that carefully doping Ag into a selected area of the precursor layer of the CIGSSe films can realize solution-processed chalcopyrite solar cells with high PCE.

11.
Commun Chem ; 3(1): 37, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36703405

RESUMO

The silicon surface texture significantly affects the current density and efficiency of perovskite/silicon tandem solar cells. However, only a few studies have explored fabricating perovskite on textured silicon and the effect of texture on perovskite films because of the limitations of solution processes. Here we produce conformal perovskite on textured silicon with a dry two-step conversion process that incorporates lead oxide sputtering and direct contact with methyl ammonium iodide. To separately analyze the influence of each texture structure on perovskite films, patterned texture, high-resolution photoluminescence (µ-PL), and light beam-induced current (µ-LBIC), 3D mapping is used. This work elucidates conformal perovskite on textured surfaces and shows the effects of textured silicon on the perovskite layers with high-resolution 3D mapping. This approach can potentially be applied to any type of layer on any type of substrate.

12.
RSC Adv ; 9(40): 23261-23266, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514484

RESUMO

In this study, we focused on understanding the roles of a polysilicon (poly-Si) layer in poly-Si/SiO x /c-Si passivating contacts. Passivating contact formation conditions were varied by changing the doping method, annealing temperature and time, polysilicon layer thickness, and polysilicon doping concentration. Our observations indicated that the roles of polysilicon are contact, in-diffusion barrier action, field effect, gettering, and light absorption. Based on the observations, a iV OC of 741 mV was obtained. Finally, to increase J SC with high V OC, the polysilicon was etched after hydrogenation to reduce light absorption with high passivation quality. iV OC was not affected by etching; moreover, by etching the polysilicon from 300 nm to 60 nm, the cell efficiency increased from 20.48% to 20.59% with increasing J SC, constant V OC, and fill factor.

13.
Sci Rep ; 9(1): 3666, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842464

RESUMO

The illuminated current-voltage characteristics of Cu(In,Ga)(S,Se)2 (CIGSSe) thin film solar cells fabricated using two different buffer layer processes: chemical bath deposition (CBD) and atomic layer deposition (ALD) were investigated. The CIGSSe solar cell with the ALD buffer showed comparable conversion efficiency to the CIGSSe solar cell with CBD buffer but lower shunt resistance even though it showed lower point shunt defect density as measured in electroluminescence. The shunt paths were investigated in detail by capturing the high-resolution dark lock-in thermography images, resolving the shunt resistance contributions of the scribing patterns (P1, P3), and depth profiling of the constituent elements. It was found that the concentration of Na from the soda-lime glass substrate played a key role in controlling the shunt paths. In the ALD process, Na segregated at the surface of CIGSSe and contributed to the increase in the shunt current through P1 and P3, resulting in a reduction in the fill factor of the CIGSSe solar cells.

15.
Sci Rep ; 7(1): 12853, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038448

RESUMO

We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (Voc) due to the hydrogen motion, but the implied Voc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

16.
Sci Rep ; 7(1): 1200, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446755

RESUMO

Organic-inorganic hybrid perovskite solar cells (PSCs) have been extensively studied because of their outstanding performance: a power conversion efficiency exceeding 22% has been achieved. The most commonly used PSCs consist of CH3NH3PbI3 (MAPbI3) with a hole-selective contact, such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spiro-bifluorene (spiro-OMeTAD), for collecting holes. From the perspective of long-term operation of solar cells, the cell performance and constituent layers (MAPbI3, spiro-OMeTAD, etc.) may be influenced by external conditions like temperature, light, etc. Herein, we report the effects of temperature on spiro-OMeTAD and the interface between MAPbI3 and spiro-OMeTAD in a solar cell. It was confirmed that, at high temperatures (85 °C), I- and CH3NH3+ (MA+) diffused into the spiro-OMeTAD layer in the form of CH3NH3I (MAI). The diffused I- ions prevented oxidation of spiro-OMeTAD, thereby degrading the electrical properties of spiro-OMeTAD. Since ion diffusion can occur during outdoor operation, the structural design of PSCs must be considered to achieve long-term stability.

17.
Sci Rep ; 7(1): 4645, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680138

RESUMO

In this study, we employ a combination of various in-situ surface analysis techniques to investigate the thermally induced degradation processes in MAPbI3 perovskite solar cells (PeSCs) as a function of temperature under air-free conditions (no moisture and oxygen). Through a comprehensive approach that combines in-situ grazing-incidence wide-angle X-ray diffraction (GIWAXD) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) measurements, we confirm that the surface structure of MAPbI3 perovskite film changes to an intermediate phase and decomposes to CH3I, NH3, and PbI2 after both a short (20 min) exposure to heat stress at 100 °C and a long exposure (>1 hour) at 80 °C. Moreover, we observe clearly the changes in the orientation of CH3NH3+ organic cations with respect to the substrate in the intermediate phase, which might be linked directly to the thermal degradation processes in MAPbI3 perovskites. These results provide important progress towards improved understanding of the thermal degradation mechanisms in perovskite materials and will facilitate improvements in the design and fabrication of perovskite solar cells with better thermal stability.

18.
J Phys Chem Lett ; 7(16): 3091-6, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27462013

RESUMO

Perovskite solar cells have great potential for high efficiency generation but are subject to the impact of external environmental conditions such as humidity, UV and sun light, temperature, and electric fields. The long-term stability of perovskite solar cells is an important issue for their commercialization. Various studies on the stability of perovskite solar cells are currently being performed; however, the stability related to electric fields is rarely discussed. Here the electrical stability of perovskite solar cells is studied. Ion migration is confirmed using the temperature-dependent dark current decay. Changes in the power conversion efficiency according to the amount of the external bias are measured in the dark, and a significant drop is observed only at an applied voltage greater than 0.8 V. We demonstrate that perovskite solar cells are stable under an electric field up to the operating voltage.

19.
Nanoscale ; 8(14): 7761-7, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27001286

RESUMO

To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I(-)/I3(-) was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode.

20.
Sci Rep ; 6: 21553, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861828

RESUMO

A high contact resistance for screen-printed contacts was observed when a conventional Ag paste was used on a boron emitter. The results of this study suggest that electron injection during firing is one of the processes that contribute to a lower contact resistance. Larger quantities of Ag precipitates formed upon electron injection into the boron emitter, which was confirmed by observing Ag crystallite or dendrite structures on the boron and by measuring the contact resistance between the boron emitter and the Ag bulk. The electron-injected sample had approximately 10000 times lower contact resistance than an untreated sample. The contact resistance of the electron-injected sample was 0.021 mΩ âˆ™ cm(2) under optimal conditions, which is lower than that of conventional p-type silicon solar cells. Thus, electron injection can effectively lower contact resistance when using Ag paste in n-type silicon solar cells. During the cooling in the firing process, dissolved Ag ions in the glass layer are formed as dendrites or crystallites/particles. The dendrites are formed earlier than others via electrochemical migration under electron injection conditions. Then, crystallites and particles are formed via a silicon etching reaction. Thus, Ag ions that are not formed as dendrites will form as crystallites or particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA