Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 20(23): e2308815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38161254

RESUMO

Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.


Assuntos
Encéfalo , Diferenciação Celular , Matriz Extracelular , Laminina , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/química , Encéfalo/metabolismo , Animais , Neurônios/metabolismo , Doenças Neuroinflamatórias/metabolismo , Suínos , Astrócitos/metabolismo , Microglia/metabolismo , Inflamação/patologia
2.
Brain Behav Immun ; 122: 568-582, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39197546

RESUMO

Alzheimer's disease (AD) pathogenesis has been associated with the gut microbiome and its metabolites, though the specific mechanisms have remained unclear. In our study, we used a multi-omics approach to identify specific microbial strains and metabolites that could potentially mitigate amyloidopathy in 5xFAD mice, a widely used model for AD research. Among the microbial strains tested, three showed promising results in reducing soluble amyloid-beta (Aß) levels. Plasma metabolomics analysis revealed an enrichment of tryptophan (Trp) and indole-3-lactic acid (ILA) in mice with reduced soluble Aß levels, suggesting a potential preventative role. The administration of a combined treatment of Trp and ILA prevented both Aß accumulation and cognitive impairment in the 5xFAD mice. Our investigation into the mechanism revealed that ILA's effect on reducing Aß levels was mediated through the activation of microglia and astrocytes, facilitated by the aryl hydrocarbon receptor (AhR) signaling pathway. These mechanisms were verified through experiments in 5xFAD mice that included an additional group with the administration of ILA alone, as well as in vitro experiments using an AhR inhibitor. Clinical data analysis revealed a greater abundance of Lactobacillus reuteri in the gut of healthy individuals compared to those at early stages of Aß accumulation or with mild cognitive impairment. Additionally, human post-mortem brain analyses showed an increased expression of genes associated with the AhR signaling pathway in individuals without AD, suggesting a protective effect against AD progression. Our results indicate that ILA from gut microbes could inhibit the progression of amyloidopathy in 5xFAD mice through activation of AhR signaling in the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Microbioma Gastrointestinal , Indóis , Receptores de Hidrocarboneto Arílico , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Indóis/farmacologia , Camundongos Transgênicos , Microbiota/efeitos dos fármacos , Microglia/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triptofano/metabolismo , Triptofano/farmacologia
3.
J Prosthet Dent ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37957064

RESUMO

STATEMENT OF PROBLEM: The introduction of digital technology in dentistry has resulted in a shift from conventional methods to digital techniques. However, mounting a digitized dental cast on a virtual articulator is challenging. Several techniques have been suggested to resolve this problem, but in the absence of a standardized method, digitized dental casts are often mounted arbitrarily on a virtual articulator. PURPOSE: The purpose of this clinical study was to compare the accuracy of a novel virtual facebow transfer (VM) technique based on cone beam computed tomography (CBCT) with that of the conventional mounting (CM) technique using a facebow. MATERIAL AND METHODS: Five repeated mountings were performed with each technique for 15 participants. In the CM group, dental casts were mounted using a facebow record and scanned for transmission to the virtual dental space. In the VM group, digital dental casts were mounted on the standard tessellation language file of a reference articulator by reconstructing a file of the participant's skull from CBCT data. In this group, a virtual facebow, prepared by scanning the articulator and facebow complex, was used. After the CM and VM casts had been aligned, the coordinates of target points set on the maxillary right central incisor, maxillary right first molar, and maxillary left first molar were determined, and the mean ±standard deviation distance between the target points was calculated to compare the precision of the techniques. Additionally, vectors of the target point on the maxillary right central incisor were compared to analyze the spatial difference between the techniques. Finally, the occlusal plane angle was calculated. For the correlation analysis of repeated measured data, a 1-way repeated measures analysis of variance (ANOVA) was first performed. The Kolmogorov-Smirnov test was performed to determine normality, and a paired t test and the Wilcoxon signed rank test were performed for normally and nonnormally distributed variables, respectively (α=.05). RESULTS: The mean distance between target points was significantly greater in the CM group (4.72 ±1.45 to 5.17 ±1.54 mm) than in the VM group (2.14 ±0.58 to 2.35 ±0.60 mm) (P<.05). The standard deviation between target points was significantly greater in the CM group (1.60 ±0.64 to 2.30 ±0.87 mm) than in the VM group (0.74 ±0.23 to 1.12 ±0.45 mm) (P<.05). The maxillary right central incisor was located more anteriorly in the VM group than in the CM (100%, P<.05) group. The occlusal plane angle was significantly steeper in the CM group than in the VM group (8.14 degrees versus 2.13 degrees, P<.05). CONCLUSIONS: The VM technique was more precise than the CM technique. VM casts were positioned ahead of CM casts. Further, the occlusal plane angle tended to be steeper with the CM technique than with the VM technique.

4.
J Prosthet Dent ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37202234

RESUMO

STATEMENT OF PROBLEM: The cement gap setting affects the marginal and internal fits depending on the crown material and manufacturing method (subtractive or additive manufacturing). However, information on the effects of cement space settings in the computer-aided design (CAD) software program, which is used to aid the manufacturing with 3-dimensional (3D) printing-type resin material, is lacking, and recommendations for optimal marginal and internal fit are needed. PURPOSE: The purpose of this in vitro study was to evaluate how cement gap settings affect the marginal and internal fit of a 3D-printed definitive resin crown. MATERIAL AND METHODS: After scanning a prepared typodont left maxillary first molar, a crown was designed with cement spaces of 35, 50, 70, and 100 µm by using a CAD software program. A total of 14 specimens per group were 3D printed from definitive 3D-printing resin. By using the replica technique, the intaglio surface of the crown was duplicated, and the duplicated specimen was sectioned in the buccolingual and mesiodistal directions. Statistical analyses were performed using the Kruskal-Wallis and the Mann-Whitney post hoc tests (α=.05). RESULTS: Although the median values of the marginal gaps were within the clinically acceptable limit (<120 µm) for all the groups, the smallest marginal gaps were obtained with the 70-µm setting. For the axial gaps, there was no observed difference in the 35-, 50-, and 70-µm groups, and the 100-µm group showed the largest gap. The smallest axio-occlusal and occlusal gaps were obtained with the 70-µm setting. CONCLUSIONS: Based on the findings of this in vitro study, a 70-µm cement gap setting is recommended for optimal marginal and internal fit of 3D-printed resin crowns.

5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293070

RESUMO

Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1ß and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p < 0.05) toward the conditioned media of the IVD models. In addition, we observed considerable activation of neurodegenerative and deactivation of protective microglia via upregulated expression of CD11b (p < 0.001) and down-regulation of CD206 protein (p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Humanos , Microglia/metabolismo , Interleucina-1beta/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Interleucina-8/metabolismo , Meios de Cultivo Condicionados/metabolismo , Interleucina-6/metabolismo , Ligantes , Disco Intervertebral/metabolismo , Citocinas/metabolismo
6.
J Prosthet Dent ; 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36096912

RESUMO

STATEMENT OF PROBLEM: Clinical trials comparing outcomes associated with digital complete dentures (CDs) fabricated from intraoral scan data with those of CDs fabricated by using the conventional workflow are lacking. PURPOSE: The purpose of this randomized clinical trial was to evaluate the clinical performance of and patient satisfaction associated with digitally versus conventionally fabricated CDs. MATERIAL AND METHODS: Eight participants requiring CDs were enrolled in this study. Two sets of CDs were fabricated for each participant. One set was fabricated by using a digital workflow, which involved digital scanning with an intraoral scanner, whereas the other set was made by using the conventional workflow. The participants were given 1 set of CDs for 1 month and another set for the next month. The order of placing CDs was randomly selected for each participant. The internal adaptation, masticatory force, and masticatory efficiency of the CDs in each group were evaluated for objective analysis. Additionally, a questionnaire was provided to the participants, and the responses were evaluated for subjective satisfaction analysis. All parameters were analyzed by using t tests (α=.05). RESULTS: The internal adaptation did not statistically significantly differ between the conventional and digital CDs with regard to the maxillary arches (P=.406) and mandibular arches (P=.412). The average masticatory force (P=.051) and maximum masticatory force (P=.110) likewise did not statistically significantly differ between the 2 types of CDs. Masticatory efficiency, expressed via the mixing ability index, was statistically better for conventional CDs than the digital CDs (P=.009). No statistically significant differences were observed between the 2 types of CDs in terms of overall patient satisfaction as assessed by using the study questionnaire (P=.172 for maxillary CD and P=.161 for mandibular CD). However, the conventional CDs were statistically significantly better than the digital CDs with regard to subjective satisfaction with pronunciation ability (P=.006). CONCLUSIONS: The digital CDs were inferior to the conventional CDs in terms of masticatory efficiency and pronunciation. However, internal adaptation and overall patient satisfaction were comparable between conventional and digital CDs. This finding suggests that intraoral scanning and additively manufactured CDs may be suitable for edentulous patients, at least for interim use.

7.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203256

RESUMO

Porphyromonas gingivalis is a gram-negative bacterium found in the human oral cavity and is responsible for the development of chronic periodontitis as well as neurological diseases, including Alzheimer's disease (AD). Given the significance of the roles of P. gingivalis in AD pathogenesis, it is critical to understand the underlying mechanisms of P. gingivalis-driven neuroinflammation and their contribution to neurodegeneration. Herein, we hypothesize that P. gingivalis produces secondary metabolites that may cause neurodegeneration through direct or indirect pathways mediated by microglia. To test our hypothesis, we treated human neural cells with bacterial conditioned media on our brain platforms and assessed microgliosis, astrogliosis and neurodegeneration. We found that bacteria-mediated microgliosis induced the production of nitric oxide, which causes neurodegeneration assessed with high pTau level. Our study demonstrated the elevation of detrimental protein mediators, CD86 and iNOS and the production of several pro-inflammatory markers from stimulated microglia. Through inhibition of LPS and succinate dehydrogenase in a bacterial conditioned medium, we showed a decrease in neurodegenerative microgliosis. In addition, we demonstrated the bidirectional effect of microgliosis and astrogliosis on each other exacerbating neurodegeneration. Overall, our study suggests that the mouth-brain axis may contribute to the pathogenesis of AD.


Assuntos
Doenças Neurodegenerativas/microbiologia , Porphyromonas gingivalis/patogenicidade , Doença de Alzheimer/microbiologia , Humanos , Microglia/metabolismo
8.
J Prosthet Dent ; 125(4): 682.e1-682.e10, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33551133

RESUMO

STATEMENT OF PROBLEM: Tissue-level internal connection implants are widely used, but the difference in abutment screw stability because of the shoulder coverage formed by the contact between the shoulder of the implant collar and the abutment remains unclear. PURPOSE: The purpose of this finite element analysis (FEA) and in vitro study was to investigate stress distribution and abutment screw stability as per the difference in shoulder coverage of the abutment in tissue-level internal connection implants. MATERIAL AND METHODS: Abutments were designed in 3 groups as per the shoulder coverage of the implant collar, yielding complete coverage (complete group), half coverage (half group), no coverage (no group) groups. In the FEA, a tightening torque of 30.0 Ncm was applied to the abutment screw, a force of 250 N was applied to the crown at a 30-degree angle, and the von Mises stresses and the stress distribution patterns were evaluated. In the in vitro study, the groups were tested (n=12). A total of 200 000 cyclic loads were applied at 250 N, 14 Hz, and at a 30-degree angle. Removal torque values and scanning electron microscopy (SEM) images were assessed. Removal torque values were analyzed by ANOVA and paired t tests. RESULTS: The maximum von Mises stress of the abutment screw was the lowest in the complete group, slightly higher in the half group, and highest in the no group. High stresses were concentrated in 1 location in the implant abutment connection area of the no group. The removal torque values after loading were significantly lower in the no group than in the complete group (P=.047). The SEM images revealed concentrated structural loss and wear in 1 location of the no group. CONCLUSIONS: FEA and in vitro studies confirmed that the shoulder coverage of the abutment in the tissue-level internal connection implant helped improve screw stability. Cyclic loading reduced the removal torque of the abutment screw.


Assuntos
Projeto do Implante Dentário-Pivô , Implantes Dentários , Parafusos Ósseos , Dente Suporte , Análise do Estresse Dentário , Análise de Elementos Finitos , Torque
9.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339351

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, typically showing progressive neurodegeneration in aging brains. The key signatures of the AD progression are the deposition of amyloid-beta (Aß) peptides, the formation of tau tangles, and the induction of detrimental neuroinflammation leading to neuronal loss. However, conventional pharmacotherapeutic options are merely relying on the alleviation of symptoms that are limited to mild to moderate AD patients. Moreover, some of these medicines discontinued to use due to either the insignificant effectiveness in improving the cognitive impairment or the adverse side effects worsening essential bodily functions. One of the reasons for the failure is the lack of knowledge on the underlying mechanisms that can accurately explain the major causes of the AD progression correlating to the severity of AD. Therefore, there is an urgent need for the better understanding of AD pathogenesis and the development of the disease-modifying treatments, particularly for severe and late-onset AD, which have not been covered thoroughly. Here, we review the underlying mechanisms of AD progression, which have been employed for the currently established therapeutic strategies. We believe this will further spur the discovery of a novel disease-modifying treatment for mild to severe, as well as early- to late-onset, AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Humanos , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Proteínas tau/metabolismo
10.
J Prosthodont ; 28(7): 797-803, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250506

RESUMO

PURPOSE: To determine the accuracy of a digital manufacturing method for dental implant restorations on stock abutments using intraoral scanners and prefabricated stock-abutment libraries. MATERIALS AND METHODS: Two dental implants with internal hexagonal connections were placed in the mandibular second premolar and second molar areas of a partially edentulous dentoform model; stock abutments with a diameter of 5 mm, abutment height of 5.5 mm, and gingival cuff height of 2 mm were connected. The study model was scanned 10 times using a reference tabletop scanner and 5 types of intraoral scanners (IOSs). The data collected by 5 types of IOSs were divided into 3 groups, based on the type and matching of stock abutment library data: no library, optical library, and contact library groups. A total of 160 data files were analyzed, including reference data. The resulting data were used to evaluate trueness and precision. RESULTS: Trueness and precision values in the group in which library data of the stock abutment were not used were 42.0 to 76.3 µm and 30.5 to 99.7 µm; corresponding values when the library data using an optical scanner were matched were 51.2 to 73.4 µm and 26.3 to 62.8 µm, and those when contact scanner library data were used were 30.1 to 62.4 µm and 15.5 to 55.9 µm. Thus, the accuracy of the contact library group was significantly higher than the accuracies of the no library (p < 0.001) and optical library groups (p < 0.001). CONCLUSION: The application of prefabricated library data of stock abutments using a contact scanner improved the accuracy of scan data. Scan accuracy of the stock abutments differed significantly based on the type of scanner.


Assuntos
Implantes Dentários , Boca Edêntula , Desenho Assistido por Computador , Dente Suporte , Técnica de Moldagem Odontológica , Humanos
11.
Proc Natl Acad Sci U S A ; 112(32): 9810-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216964

RESUMO

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(± 0.3) × 10(-14) cm(3)/s or 3.5(± 1.0) × 10(8) water molecules per s, which is in the range of AQPs (3.4 ∼ 40.3 × 10(8) water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10(8) water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼ 10(7) water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼ 2.6 × 10(5) pores per µm(2)) is two orders of magnitude higher than that of CNT membranes (0.1 ∼ 2.5 × 10(3) pores per µm(2)). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.


Assuntos
Canais Iônicos/química , Água/química , Aquaporinas/química , Íons , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanotubos de Carbono , Peptídeos/química , Permeabilidade , Lipossomas Unilamelares/química
12.
Materials (Basel) ; 17(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39336386

RESUMO

This study aimed to measure the fracture strengths and hardness of final restorative milled and 3D-printed materials and evaluate the appropriate crown thickness for their clinical use for permanent prosthesis. One type of milled material (group M) and two types of 3D-printed materials (groups P1 and P2) were used. Their crown thickness was set to 0.5, 1.0, and 1.5 mm for each group, and the fracture strength was measured. Vickers hardness was measured and analyzed to confirm the hardness of each material. Scanning electron microscopy was taken to observe the surface changes of the 3D-printed materials under loads of 900 and 1500 N. With increased thickness, the fracture strength significantly increased for group M but significantly decreased for group P1. For group P2, the fracture strengths for the thicknesses of 0.5 mm and 1.5 mm significantly differed, but that for 1.0 mm did not differ from those for other thicknesses. The hardness of group M was significantly higher than that of groups P1 and P2. For all thicknesses, the fracture strength was higher than the average occlusal force for all materials; however, an appropriate crown thickness is required depending on the material and component.

13.
Sci Rep ; 14(1): 744, 2024 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185738

RESUMO

Aluminum oxide nanoparticle (AlNP), a ubiquitous neurotoxin highly enriched in air pollution, is often produced as an inevitable byproduct in the manufacturing of industrial products such as cosmetics and metal materials. Meanwhile, ALNP has emerged as a significant public health concern due to its potential association with neurological diseases. However, the studies about the neurotoxic effects of AlNP are limited, partially due to the lack of physiologically relevant human neurovascular unit with innate immunity (hNVUI). Here, we employed our AlNP-treated hNVUI model to investigate the underlying mechanism of AlNP-driven neurodegeneration. First, we validated the penetration of AlNP across a blood-brain barrier (BBB) compartment and found AlNP-derived endothelial cellular senescence through the p16 and p53/p21 pathways. Our study showed that BBB-penetrating AlNP promoted reactive astrocytes, which produced a significant level of reactive oxygen species (ROS). The astrocytic neurotoxic factors caused neuronal damage, including the synaptic impairment, the accumulation of phosphoric-tau proteins, and even neuronal death. Our study suggests that AlNP could be a potential environmental risk factor of neurological disorders mediated by neuroinflammation.


Assuntos
Poluição do Ar , Síndromes Neurotóxicas , Humanos , Óxido de Alumínio/toxicidade , Barreira Hematoencefálica , Morte Celular , Senescência Celular
14.
Adv Sci (Weinh) ; 11(15): e2305326, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342616

RESUMO

Botulinum neurotoxin serotype A (BoNT/A) is widely used in therapeutics and cosmetics. The effects of multi-dosed BoNT/A treatment are well documented on the peripheral nervous system (PNS), but much less is known on the central nervous system (CNS). Here, the mechanism of multi-dosed BoNT/A leading to CNS neurodegeneration is explored by using the 3D human neuron-glia model. BoNT/A treatment reduces acetylcholine, triggers astrocytic transforming growth factor beta, and upregulates C1q, C3, and C5 expression, inducing microglial proinflammation. The disintegration of the neuronal microtubules is escorted by microglial nitric oxide, interleukin 1ß, tumor necrosis factor α, and interleukin 8. The microglial proinflammation eventually causes synaptic impairment, phosphorylated tau (pTau) aggregation, and the loss of the BoNT/A-treated neurons. Taking a more holistic approach, the model will allow to assess therapeutics for the CNS neurodegeneration under the prolonged use of BoNT/A.


Assuntos
Microglia , Neurônios , Humanos , Microglia/metabolismo , Astrócitos
15.
Adv Sci (Weinh) ; 11(20): e2304357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482922

RESUMO

Microglial neuroinflammation appears to be neuroprotective in the early pathological stage, yet neurotoxic, which often precedes neurodegeneration in Alzheimer's disease (AD). However, it remains unclear how the microglial activities transit to the neurotoxic state during AD progression, due to complex neuron-glia interactions. Here, the mechanism of detrimental microgliosis in AD by employing 3D human AD mini-brains, brain tissues of AD patients, and 5XFAD mice is explored. In the human and animal AD models, amyloid-beta (Aß)-overexpressing neurons and reactive astrocytes produce interferon-gamma (IFNγ) and excessive oxidative stress. IFNγ results in the downregulation of mitogen-activated protein kinase (MAPK) and the upregulation of Kelch-like ECH-associated Protein 1 (Keap1) in microglia, which inactivate nuclear factor erythroid-2-related factor 2 (Nrf2) and sensitize microglia to the oxidative stress and induces a proinflammatory microglia via nuclear factor kappa B (NFκB)-axis. The proinflammatory microglia in turn produce neurotoxic nitric oxide and proinflammatory mediators exacerbating synaptic impairment, phosphorylated-tau accumulation, and discernable neuronal loss. Interestingly, recovering Nrf2 in the microglia prevents the activation of proinflammatory microglia and significantly blocks the tauopathy in AD minibrains. Taken together, it is envisioned that IFNγ-driven Nrf2 downregulation in microglia as a key target to ameliorate AD pathology.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Interferon gama , Microglia , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Microglia/metabolismo , Humanos , Camundongos , Interferon gama/metabolismo , Camundongos Transgênicos
16.
Adv Sci (Weinh) ; 11(34): e2400064, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981007

RESUMO

Microglia play a crucial role in synaptic elimination by engulfing dystrophic neurons via triggering receptors expressed on myeloid cells 2 (TREM2). They are also involved in the clearance of beta-amyloid (Aß) plaques in Alzheimer's disease (AD); nonetheless, the driving force behind TREM2-mediated phagocytosis of beta-amyloid (Aß) plaques remains unknown. Here, using advanced 2D/3D/4D co-culture systems with loss-of-function mutations in TREM2 (a frameshift mutation engineered in exon 2) brain organoids/microglia/assembloids, it is identified that the clearance of Aß via TREM2 is accelerated by externalized phosphatidylserine (ePtdSer) generated from dystrophic neurons surrounding the Aß plaques. Moreover, it is investigated whether microglia from both sporadic (CRISPR-Cas9-based APOE4 lines) and familial (APPNL-G-F/MAPT double knock-in mice) AD models show reduced levels of TREM2 and lack of phagocytic activity toward ePtdSer-positive Aß plaques. Herein new insight is provided into TREM2-dependent microglial phagocytosis of Aß plaques in the context of the presence of ePtdSer during AD progression.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Microglia , Fagocitose , Fosfatidilserinas , Placa Amiloide , Receptores Imunológicos , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Transgênicos , Microglia/metabolismo , Fosfatidilserinas/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética
17.
Carcinogenesis ; 34(8): 1918-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23615398

RESUMO

Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is preferentially cytotoxic to cancer cells over normal cells. However, many cancer cells, including malignant glioma cells, tend to be resistant to TRAIL. Monensin (a polyether ionophore antibiotic that is widely used in veterinary medicine) and salinomycin (a compound that is structurally related to monensin and shows cancer stem cell-inhibiting activity) are currently recognized as anticancer drug candidates. In this study, we show that monensin effectively sensitizes various glioma cells, but not normal astrocytes, to TRAIL-mediated apoptosis; this occurs at least partly via monensin-induced endoplasmic reticulum (ER) stress, CHOP-mediated DR5 upregulation and proteasome-mediated downregulation of c-FLIP. Interestingly, other polyether antibiotics, such as salinomycin, nigericin, narasin and lasalocid A, also stimulated TRAIL-mediated apoptosis in glioma cells via ER stress, CHOP-mediated DR5 upregulation and c-FLIP downregulation. Taken together, these results suggest that combined treatment of glioma cells with TRAIL and polyether ionophore antibiotics may offer an effective therapeutic strategy.


Assuntos
Antibacterianos/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/tratamento farmacológico , Monensin/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Glioma/genética , Glioma/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/farmacologia , Regulação para Cima/efeitos dos fármacos
18.
Dent Mater ; 39(7): 648-658, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210307

RESUMO

OBJECTIVES: This study aimed to assess the effects of airborne-particle abrasion (APA) on the flexural strength of two types of 3D-printing resins for permanent restoration. METHODS: Two types of 3D printing resins (urethane dimethacrylate oligomer; UDMA, ethoxylated bisphenol-A dimethacrylate; BEMA) constituting different components were printed. The specimen surfaces were subjected to APA using 50 and 110 µm alumina particles under different pressures. The three-point flexural strength was measured for each surface treatment group, and a Weibull analysis was performed. Surface characteristics were analyzed via surface roughness measurements and scanning electron microscopy. Dynamic mechanical analysis and nano-indentation measurements were limited to the control group. RESULTS: The three-point flexural strength according to the surface treatment was significantly lower in the UDMA group for large particle sizes and at high pressures; the BEMA group demonstrated low flexural strength for large particle sizes regardless of the pressure. After thermocycling, the flexural strengths of UDMA and BEMA significantly decreased in the group subjected to surface treatment. The Weibull modulus and characteristic strength of UDMA were higher than those of BEMA under different APA and thermocycling conditions. As the abrasion pressure and particle size increased, a porous surface formed, and the surface roughness increased. Compared with BEMA, UDMA featured a lower strain, greater strain recovery, and a negligible increase in modulus according to strain. SIGNIFICANCE: Thus, surface roughness increased with the sandblasting particle size and pressure of the 3D-printing resin. Hence, a suitable surface treatment method to improve adhesion can be determined by considering physical property changes.


Assuntos
Materiais Dentários , Resistência à Flexão , Teste de Materiais , Propriedades de Superfície , Impressão Tridimensional
19.
Lab Chip ; 23(5): 964-981, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644973

RESUMO

Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Doenças do Sistema Nervoso Central , Humanos , Encéfalo , Modelos Biológicos
20.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36987170

RESUMO

Three-dimensional (3D) printing polymers such as urethane dimethacrylate (UDMA) and ethoxylated bisphenol A dimethacrylate (Bis-EMA) are typically used in definitive prosthesis and require surface treatments before bonding. However, surface treatment and adhesion conditions often affect long-term use. Herein, polymers were divided into Groups 1 and 2 for the UDMA and Bis-EMA components, respectively. The shear bond strength (SBS) between two types of 3D printing resins and resin cements was measured using Rely X Ultimate Cement and Rely X U200, according to adhesion conditions such as single bond universal (SBU) and airborne-particle abrasion (APA) treatments. Thermocycling was performed to evaluate the long-term stability. Sample surface changes were observed using a scanning electron microscope and surface roughness measuring instrument. The effect of interaction between the resin material and adhesion conditions on the SBS was analyzed via a two-way analysis of variance. The optimal adhesion condition for Group 1 was achieved when U200 was used after APA and SBU, whereas Group 2 was not significantly affected by the adhesion conditions. After thermocycling, the SBS significantly decreased in Group 1 without APA treatment and in the entire Group 2. Additionally, porosity, along with increased roughness, was observed on both material surfaces after APA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA