Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768864

RESUMO

The papillomavirus (PV) E2 protein is a DNA binding, protein interaction platform that recruits viral and host factors necessary for transcription and replication. We recently discovered phosphorylation of a tyrosine (Y102) in bovine PV (BPV) E2. To identify the responsible factor, we tested several candidate tyrosine kinases that are highly expressed in keratinocytes for binding to BPV-1 E2. Fibroblast growth factor receptor 3 (FGFR3) coimmunoprecipitated with the BPV-1 E2 protein, as did human papillomavirus 31 (HPV-31) E2, which also colocalized with FGFR3 within the nucleus. A constitutively active mutant form of FGFR3 decreased BPV-1 and HPV-31 transient replication although this result also occurred in a BPV-1 E2 mutant lacking a previously identified phosphorylation site of interest (Y102). Furthermore, FGFR3 depletion in cell lines that maintain HPV-31 episomes increased viral copy number. These results suggest that FGFR3 kinase activity may regulate the PV reproductive program through phosphorylation of the E2 protein although this is unlikely to occur through the Y102 residue of HPV E2.IMPORTANCE The papillomavirus (PV) is a double-stranded DNA tumor virus infecting cervix, mouth, and throat tissues. The viral protein E2 is responsible for the replication of the virus. Understanding the mechanisms of the replicative life cycle of the virus may bring to light direct targets and treatments against viral infection. We recently found that the fibroblast growth factor receptor 3 (FGFR3) interacts with and mediates PV E2 function through phosphorylation of the E2 protein. Our study suggests that the function of the E2 protein may be regulated through a direct FGFR3 target during the maintenance stage of the PV life cycle.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 31/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Fosfotransferases/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Animais , Bovinos , Replicação do DNA , Papillomavirus Humano 31/enzimologia , Humanos , Fosforilação , Plasmídeos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Tirosina/química
2.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807239

RESUMO

Papillomaviruses are small, double-stranded DNA viruses that encode the E2 protein, which controls transcription, replication, and genome maintenance in infected cells. Posttranslational modifications (PTMs) affecting E2 function and stability have been demonstrated for multiple types of papillomaviruses. Here we describe the first phosphorylation event involving a conserved tyrosine (Y) in the bovine papillomavirus 1 (BPV-1) E2 protein at amino acid 102. While its phosphodeficient phenylalanine (F) mutant activated both transcription and replication in luciferase reporter assays, a mutant that may act as a phosphomimetic, with a Y102-to-glutamate (E) mutation, lost both activities. The E2 Y102F protein interacted with cellular E2-binding factors and the viral helicase E1; however, in contrast, the Y102E mutant associated with only a subset and was unable to bind to E1. While the Y102F mutant fully supported transient viral DNA replication, BPV genomes encoding this mutation as well as Y102E were not maintained as stable episomes in murine C127 cells. These data imply that phosphorylation at Y102 disrupts the helical fold of the N-terminal region of E2 and its interaction with key cellular and viral proteins. We hypothesize that the resulting inhibition of viral transcription and replication in basal epithelial cells prevents the development of a lytic infection. IMPORTANCE: Papillomaviruses (PVs) are small, double-stranded DNA viruses that are responsible for cervical, oropharyngeal, and various genitourinary cancers. Although vaccines against the major oncogenic human PVs are available, there is no effective treatment for existing infections. One approach to better understand the viral replicative cycle, and potential therapies to target it, is to examine the posttranslational modification of viral proteins and its effect on function. Here we have discovered that the bovine papillomavirus 1 (BPV-1) transcription and replication regulator E2 is phosphorylated at residue Y102. While a phosphodeficient mutant at this site was fully functional, a phosphomimetic mutant displayed impaired transcription and replication activity as well as a lack of an association with certain E2-binding proteins. This study highlights the influence of posttranslational modifications on viral protein function and provides additional insight into the complex interplay between papillomaviruses and their hosts.


Assuntos
Papillomavirus Bovino 1/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Transcrição Gênica , Tirosina/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Alphapapillomavirus/fisiologia , Animais , Bovinos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Genoma Viral , Humanos , Modelos Moleculares , Mutação , Fosforilação , Plasmídeos/genética , Conformação Proteica , Transporte Proteico , Proteínas Virais/química , Proteínas Virais/genética
3.
PLoS Pathog ; 12(10): e1005934, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701460

RESUMO

The origin recognition complex (ORC) coordinates a series of events that lead to initiation of DNA strand duplication. As a nuclear double stranded DNA plasmid, the papillomavirus (PV) genome resembles a mini-chromosome in infected cells. To initiate its replication, the viral E2 protein binds to and recruits the E1 DNA helicase at the viral origin. PV genome replication program exhibits three stages: initial amplification from a single genome upon infection to a few copies per cell, a cell cycle linked maintenance phase, and a differentiation dependent late stage where the genome is amplified to thousands of copies. Involvement of ORC or other pre-replication complex (pre-RC) factors has not been described. We report that human PV (HPV) and bovine PV (BPV-1) E2 proteins bind to ORC2, however, ORC2 was not detected at the viral origin. Depletion of ORC2 enhanced PV replication in a transient replication model and in keratinocytes stably maintaining viral episomes, while there was no effect on copy number in a cell line with integrated HPV genomes. Consistent with this, occupancy of E1 and E2 at the viral origin increased following ORC2 silencing. These data imply that ORC2 is not necessary for activation of the PV origin by E1 and E2 but instead suppresses E2 replicative function. Furthermore, we observed that over-expression of HPV E2 decreased ORC2 occupation at two known mammalian origins of replication, suggesting that E2 restricts pre-ORC assembly that could otherwise compete for host replication complexes necessary for viral genome amplification. We infer that the ORC2 complex with E2 restricts viral replication in the maintenance phase of the viral replication program and that elevated levels of E2 that occur during the differentiation dependent amplification stage subvert ORC loading and hence DNA synthesis at cellular origins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Papillomaviridae/fisiologia , Replicação Viral/fisiologia , Papillomavirus Bovino 1/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação
4.
Pathogens ; 11(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365049

RESUMO

Epidemiological studies have revealed that caffeinated coffee imparts a reduced risk of oropharyngeal cancer, of which human papillomavirus (HPV) is one of the causative agents. Caffeine is a known inhibitor of the DNA damage response (DDR) pathway. We sought to test the effects of caffeine on the early replication of the HPV31 virus. It has been reported that the inhibition of several factors necessary for the DDR during the differentiation-dependent stage of HPV block genome amplification, while the HPV genome maintenance replication was unaffected. We first studied the effects of caffeine in the earliest stages of viral infection. Using pseudo-virions (PsV) expressing an m-Cherry reporter gene and quasi-virions (QsV) containing HPV31 genomes to mediate the infection, we found no evidence that caffeine impeded the viral entry; however, the infected cells displayed a reduced HPV copy number. In contrast, caffeine exposure increased the copy number of HPV31 episomes in the transient transfection assays and in the CIN612E cells that stably maintain viral episomes. There was a concomitant increase in the steady state levels of the HPV31 E1 and E2 transcripts, along with increased E2 loading at the viral origin of replication (ori). These results suggest that the caffeine-mediated inhibition of the DDR reduces viral genome replication in the early stage of infection, in contrast to the maintenance stage, in which the inhibition of the DDR may lead to an increase in viral amplicon replication.

5.
BMC Biol ; 7: 14, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19335876

RESUMO

BACKGROUND: In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. RESULTS: Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby molecularly separating fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. CONCLUSION: The results link key behavioral traits with gene expression profiles in brain that differentiate migratory from summer butterflies and thus show that seasonal changes in genomic function help define the migratory state.


Assuntos
Migração Animal/fisiologia , Comportamento Animal/fisiologia , Borboletas/fisiologia , Voo Animal/fisiologia , Estações do Ano , Animais , Encéfalo/metabolismo , Borboletas/efeitos dos fármacos , Borboletas/metabolismo , Feminino , Regulação da Expressão Gênica , Hormônios Juvenis/metabolismo , Masculino , Metoprene/farmacologia , Análise Serial de Proteínas , Comportamento Sexual Animal/efeitos dos fármacos
6.
BMC Evol Biol ; 8: 174, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18544161

RESUMO

BACKGROUND: Domestication of chicken is believed to have occurred in Southeast Asia, especially in Indus valley. However, non-inclusion of Indian red jungle fowl (RJF), Gallus gallus murghi in previous studies has left a big gap in understanding the relationship of this major group of birds. In the present study, we addressed this issue by analyzing 76 Indian birds that included 56 G. g. murghi (RJF), 16 G. g. domesticus (domestic chicken) and 4 G. sonneratii (Grey JF) using both microsatellite markers and mitochondrial D-loop sequences. We also compared the D-loop sequences of Indian birds with those of 779 birds obtained from GenBank. RESULTS: Microsatellite marker analyses of Indian birds indicated an average FST of 0.126 within G. g. murghi, and 0.154 within G. g. domesticus while it was more than 0.2 between the two groups. The microsatellite-based phylogenetic trees showed a clear separation of G. g. domesticus from G. g. murghi, and G. sonneratii. Mitochondrial DNA based mismatch distribution analyses showed a lower Harpending's raggedness index in both G. g. murghi (0.001515) and in Indian G. g. domesticus (0.0149) birds indicating population expansion. When meta analysis of global populations of 855 birds was carried out using median joining haplotype network, 43 Indian birds of G. g. domesticus (19 haplotypes) were distributed throughout the network sharing haplotypes with the RJFs of different origins. CONCLUSION: Our results suggest that the domestication of chicken has occurred independently in different locations of Asia including India. We found evidence for domestication of Indian birds from G. g. spadiceus and G. g. gallus as well as from G. g. murghi, corroborating multiple domestication of Indian and other domestic chicken. In contrast to the commonly held view that RJF and domestic birds hybridize in nature, the present study shows that G. g. murghi is relatively pure. Further, the study also suggested that the chicken populations have undergone population expansion, especially in the Indus valley.


Assuntos
Animais Domésticos/genética , Galinhas/genética , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Animais , Sequência de Bases , Galinhas/classificação , Evolução Molecular , Variação Genética , Haplótipos , Índia , Dados de Sequência Molecular , Filogenia , Análise de Componente Principal , Alinhamento de Sequência
7.
Virology ; 521: 62-68, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29885490

RESUMO

The papillomavirus (PV) E2 protein activates transcription and replication by recruiting cellular proteins and the E1 DNA helicase to their binding sites in the viral genome. We recently demonstrated that phosphorylation of tyrosine 102 in the bovine papillomavirus (BPV-1) E2 protein restricts these activities and that fibroblast growth factor receptor-3 (FGFR3) tyrosine kinase binds PV E2. Expression of FGFR3 decreased viral replication with both wild-type and the phenylalanine substitution at position 102, inferring that another kinase targets Y102. Here we tested FGFR- 1, -2 and -4 for association with PV E2 proteins. FGFR2 but not FGFR1 or FGFR4 co-immunoprecipitated with BPV-1 E2. We found that FGFR2 suppressed replication but did not depend on phosphorylation of BPV-1 Y102. HPV-16 and -31 E2 interacted with FGFR1, -2, and -4. These results imply that the expression and activity of FGF receptors in epithelial cells can regulate the function of E2 in viral replication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interações entre Hospedeiro e Microrganismos , Papillomavirus Humano 16/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Virais/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Imunoprecipitação , Fosforilação , Proteínas Tirosina Quinases , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Virais/genética , Replicação Viral
8.
Virology ; 478: 129-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666521

RESUMO

The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Humanos , Camundongos
9.
BMC Genet ; 5: 16, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15202952

RESUMO

BACKGROUND: Molecular characterization of cattle breeds is important for the prevention of germplasm erosion by cross breeding. The Indian zebu cattle have their significant role in evolution of present day cattle breeds and development of some of the exotic breeds. Microsatellites are the best available molecular tools for characterization of cattle breeds. The present study was carried out to characterize two Indian cattle breeds, Ongole and Deoni, using microsatellite markers. RESULTS: Using 5 di- and 5 tri-nucleotide repeat loci, 17 Ongole and 13 Deoni unrelated individuals were studied. Of the ten loci, eight revealed polymorphism in both the breeds. The di-nucleotide repeat loci were found to be more polymorphic (100%) than tri-nucleotide repeat loci (60%). A total of 39 polymorphic alleles were obtained at 4.5 alleles per locus in Ongole and 4.1 in Deoni. The average expected heterozygosity was 0.46 (+/-0.1) and 0.50 (+/-0.1) in Ongole and Deoni breeds, respectively. The PIC values of the polymorphic loci ranged from 0.15 to 0.79 in Ongole and 0.13 to 0.80 in Deoni breeds. Six Ongole specific and three Deoni specific alleles were identified. The two breeds showed a moderate genetic relationship between themselves with a FST value of 0.117 (P = 0.01). CONCLUSIONS: This preliminary study shows that microsatellite markers are useful in distinguishing the two zebu breeds namely, Ongole and Deoni. Further studies of other zebu breeds using many microsatellite loci with larger sample sizes can reveal the genetic relationships of Indian breeds.


Assuntos
Genética , Repetições de Microssatélites/genética , Animais , Cruzamento , Bovinos , Cruzamentos Genéticos , Evolução Molecular , Índia , Projetos Piloto , Polimorfismo Genético/genética
10.
BMC Genet ; 5: 1, 2004 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-14715088

RESUMO

BACKGROUND: The genus Morus, known as mulberry, is a dioecious and cross-pollinating plant that is the sole food for the domesticated silkworm, Bombyx mori. Traditional methods using morphological traits for classification are largely unsuccessful in establishing the diversity and relationships among different mulberry species because of environmental influence on traits of interest. As a more robust alternative, PCR based marker assays including RAPD and ISSR were employed to study the genetic diversity and interrelationships among twelve domesticated and three wild mulberry species. RESULTS: RAPD analysis using 19 random primers generated 128 discrete markers ranging from 500-3000 bp in size. One-hundred-nineteen of these were polymorphic (92%), with an average of 6.26 markers per primer. Among these were a few putative species-specific amplification products which could be useful for germplasm classification and introgression studies. The ISSR analysis employed six anchored primers, 4 of which generated 93 polymorphic markers with an average of 23.25 markers per primer. Cluster analysis of RAPD and ISSR data using the WINBOOT package to calculate the Dice coefficient resulted into two clusters, one comprising polyploid wild species and the other with domesticated (mostly diploid) species. CONCLUSION: These results suggest that RAPD and ISSR markers are useful for mulberry genetic diversity analysis and germplasm characterization, and that putative species-specific markers may be obtained which can be converted to SCARs after further studies.


Assuntos
Marcadores Genéticos/genética , Variação Genética , Morus/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Eletroforese em Gel de Ágar , Morus/classificação , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico , Sequências Repetitivas de Ácido Nucleico/genética , Especificidade da Espécie
11.
Melanoma Res ; 23(3): 213-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624367

RESUMO

The tumor suppressor p53 plays a central role in preventing tumor development by promoting transcription of genes that stall cell cycle and induce cell death. Although the majority of melanomas express wild-type p53, the molecular mechanisms that impede its activation remain unclear. We previously reported that the SUMO E3 ligase PIASy and the histone acetyltransferase Tip60 signaling cascade promote p53-dependent autophagy and apoptosis. We hypothesized that impairment in this signaling attenuates p53, thus disabling its apoptotic function in melanoma. Here, we show that human melanoma patient samples and cell lines maintain p53 expression but PIASy and/or Tip60 are frequently lost. We observed dysregulation of Tip60-mediated p53 transcription program in melanoma cell lines. Reconstitution of PIASy and Tip60 in melanoma cells increased genotoxic stress-induced apoptosis. Our study provides a clinical link of how sumoylation signaling may activate p53-mediated cell death in melanoma.


Assuntos
Histona Acetiltransferases/metabolismo , Melanoma/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Histona Acetiltransferases/genética , Humanos , Imuno-Histoquímica , Lisina Acetiltransferase 5 , Melanoma/genética , Melanoma/patologia , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Inibidoras de STAT Ativados/genética , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/genética
12.
Genetics ; 193(1): 63-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23105011

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) that infects the silkworm, B. mori, accounts for >50% of silk cocoon crop losses globally. We speculated that simultaneous targeting of several BmNPV essential genes in transgenic silkworm would elicit a stable defense against the virus. We introduced into the silkworm germline the vectors carrying short sequences of four essential BmNPV genes in tandem, either in sense or antisense or in inverted-repeat arrangement. The transgenic silkworms carrying the inverted repeat-containing transgene showed stable protection against high doses of baculovirus infection. Further, the antiviral trait was incorporated to a commercially productive silkworm strain highly susceptible to BmNPV. This led to combining the high-yielding cocoon and silk traits of the parental commercial strain and a very high level of refractoriness (>75% survival rate as compared to <15% in nontransgenic lines) to baculovirus infection conferred by the transgene. We also observed impaired infectivity of the occlusion bodies derived from the transgenic lines as compared to the wild-type ones. Currently, large-scale exploitation of these transgenic lines is underway to bring about economic transformation of sericulture.


Assuntos
Bombyx/genética , Bombyx/virologia , Genes de Insetos , Nucleopoliedrovírus/imunologia , Interferência de RNA , Animais , Animais Geneticamente Modificados , Técnicas de Silenciamento de Genes , Ordem dos Genes , Vetores Genéticos , Característica Quantitativa Herdável , Seda/química , Transgenes
13.
J Insect Physiol ; 57(2): 231-45, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21078327

RESUMO

Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments.


Assuntos
Regulação da Expressão Gênica , Lepidópteros/genética , Lepidópteros/imunologia , Interferência de RNA , Animais , Bases de Dados Genéticas , Epiderme/crescimento & desenvolvimento , Inativação Gênica , Imunidade Inata , Proteínas de Insetos/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Lepidópteros/efeitos dos fármacos , Lepidópteros/crescimento & desenvolvimento , RNA de Cadeia Dupla/efeitos dos fármacos , Projetos de Pesquisa
14.
Virology ; 397(1): 139-44, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19945133

RESUMO

HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Papillomaviridae/patogenicidade , Proteínas E7 de Papillomavirus/metabolismo , Proliferação de Células , Células Cultivadas , Proteína Substrato Associada a Crk/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/biossíntese , Humanos , Queratinócitos/virologia , Proteínas Supressoras de Tumor/antagonistas & inibidores
15.
J Invertebr Pathol ; 92(2): 59-65, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16713602

RESUMO

Lepidopteran cell lines constitute the backbone for studying baculoviral biology in culturo and for baculovirus vector based recombinant protein expression systems. In the present study, we report establishment of a new continuous cell line designated as DZNU-Bm-1 from larval ovaries of the silkworm, Bombyx mori. The cells were grown in MGM-448 insect cell culture medium supplemented with 10% fetal bovine serum (FBS) and 3% heat inactivated B. mori haemolymph at 25+/-1 degrees C. A large number of attached epithelial-like and round refractive cells migrated from the explants and multiplied in the primary cultures. Both type of cells were subcultured initially for a few passages but after 10 passages the round refractive cells dominated the population, which could be subcultured continuously using MGM-448 medium with 10% FBS. The population doubling time of cell line was about 42h at 25+/-1 degrees C. The cell populations were largely diploids and triploids, while a few tetraploids and hexaploids were also observed. DNA profiles using Inter Simple Sequence Repeat (ISSR)-PCR and Simple Sequence Repeat (SSR) loci established the differences between DZNU-Bm-1 cell line and most widely used BmN cell line and the B. mori W-chromosome specific sequences confirmed the origin of DZNU-Bm-1 cell line to be from female silkworm. When cells were infected with free nonoccluded B. mori nucleopolyhedrovirus (BmNPV), the cell line was found to be highly susceptible with 92-94% of the cells harbouring BmNPV and having an average of 20-23 OBs/infected cell. We suggest the usefulness of this cell line in BmNPV based baculoviral expression system and also for studying in culturo virus replication.


Assuntos
Bombyx/virologia , Linhagem Celular/virologia , Nucleopoliedrovírus/fisiologia , Ovário/citologia , Replicação Viral/fisiologia , Animais , Bombyx/citologia , Bombyx/crescimento & desenvolvimento , Técnicas de Cultura de Células , Impressões Digitais de DNA , Feminino , Larva/citologia , Ovário/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA