Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998149

RESUMO

Despite the prevalence of diabetic retinopathy, the majority of adult diabetic patients develop visually debilitating corneal complications, including impaired wound healing. Unfortunately, there is limited treatment for diabetes-induced corneal damage. The current project investigates a novel, peptide-based combination therapy, thymosin beta-4 and vasoactive intestinal peptide (Tß4/VIP), against high-glucose-induced damage to the corneal epithelium. Electric cell-substrate impedance sensing (ECIS) was used for real-time monitoring of barrier function and wound healing of human corneal epithelial cells maintained in either normal glucose (5 mM) or high glucose (25 mM) ± Tß4 (0.1%) and VIP (5 nM). Barrier integrity was assessed by resistance, impedance, and capacitance measurements. For the wound healing assay, cell migration was also monitored. Corneal epithelial tight junction proteins (ZO-1, ZO-2, occludin, and claudin-1) were assessed to confirm our findings. Barrier integrity and wound healing were significantly impaired under high-glucose conditions. However, barrier function and cell migration significantly improved with Tß4/VIP treatment. These findings were supported by high-glucose-induced downregulation of tight junction proteins that were effectively maintained similar to normal levels when treated with Tß4/VIP. These results strongly support the premise that Tß4 and VIP work synergistically to protect corneal epithelial cells against hyperglycemia-induced damage. In addition, this work highlights the potential for significant translational impact regarding the treatment of diabetic patients and associated complications of the cornea.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Peptídeo Intestinal Vasoativo/fisiologia , Células Epiteliais , Glucose , Proteínas de Junções Íntimas
2.
Sci Rep ; 12(1): 14126, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986158

RESUMO

An intact epithelium is key to maintaining corneal integrity and barrier function which can lead to impaired ocular defense and sight-threatening opacity when compromised. Electrical cell-substrate impedance sensing or ECIS is a non-invasive method to measure real-time cellular behaviors including barrier function and cell migration. The current study uses ECIS technology to assess and optimize human telomerase-immortalized corneal epithelial cells to generate quantifiable measurements that accurately reflect changes in cell behavior in vitro. Five cell densities were assessed in two different media to determine the optimal conditions for monitoring of cellular behavior over time. Parameters of evaluation included: overall impedance (Z), barrier resistance (R), cell capacitance (C), and mathematical modeling of the R data to further generate Rb (the electrical resistance between HUCLs), α (the resistance between the HUCLs and the substrate), and Cm (the capacitance of the cell membrane) measurements. All parameters of assessment strongly indicated DMEM/F12 at 60,000 cells as the optimal condition for ECIS assessment of HUCLs. Furthermore, this work highlights the ability of the sensitive ECIS biosensor technology to comprehensively and quantitatively assess corneal epithelial cell structure and function and the importance of optimizing not only cell density, but choice of media used for in vitro culturing.


Assuntos
Técnicas Biossensoriais , Células Epiteliais , Técnicas Biossensoriais/métodos , Movimento Celular , Impedância Elétrica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA