Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Med ; 24(1): 37, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30134825

RESUMO

BACKGROUND: Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently unknown. We used cardiomyocyte-specific overexpression of active HDAC4 to determine the functional role of activated HDAC4 in regulating myocardial ischemia and reperfusion in isovolumetric perfused hearts. METHODS: In this study, we created myocyte-specific active HDAC4 transgenic mice to examine the functional role of active HDAC4 in mediating myocardial I/R injury. Ventricular function was determined in the isovolumetric heart, and infarct size was determined using tetrazolium chloride staining. RESULTS: Myocyte-specific overexpressing activated HDAC4 in mice promoted myocardial I/R injury, as indicated by the increases in infarct size and reduction of ventricular functional recovery following I/R injury. Notably, active HDAC4 overexpression led to an increase in LC-3 and active caspase 3 and decrease in SOD-1 in myocardium. Delivery of chemical HDAC inhibitor attenuated the detrimental effects of active HDAC4 on I/R injury, revealing the pivotal role of active HDAC4 in response to myocardial I/R injury. CONCLUSIONS: Taken together, these findings are the first to define that activated HDAC4 as a crucial regulator for myocardial ischemia and reperfusion injury.


Assuntos
Histona Desacetilases/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Masculino , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/fisiologia , Suínos , Função Ventricular Esquerda
2.
J Infect Dis ; 215(9): 1396-1406, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368517

RESUMO

Background: Cardiac dysfunction is present in >40% of sepsis patients and is associated with mortality rates of up to 70%. Recent evidence suggests that glycolytic metabolism plays a critical role in host defense and inflammation. Activation of Toll-like receptors on immune cells can enhance glycolytic metabolism. This study investigated whether modulation of glycolysis by inhibition of hexokinase will be beneficial to septic cardiomyopathy. Methods: Male C57B6/J mice were treated with a hexokinase inhibitor (2-deoxy-d-glucose [2-DG], 0.25-2 g/kg, n = 6-8) before cecal ligation and puncture (CLP) induced sepsis. Untreated septic mice served as control. Sham surgically operated mice treated with or without the 2-DG inhibitor served as sham controls. Cardiac function was assessed 6 hours after CLP sepsis by echocardiography. Serum was harvested for measurement of inflammatory cytokines and lactate. Results: Sepsis-induced cardiac dysfunction was significantly attenuated by administration of 2-DG. Ejection fraction and fractional shortening in 2-DG-treated septic mice were significantly (P < .05) greater than in untreated CLP mice. 2-DG administration also significantly improved survival outcome, reduced kidney and liver injury, attenuated sepsis-increased serum levels of tumor necrosis factor α and interleukin 1ß as well as lactate, and enhanced the expression of Sirt1 and Sirt3 in the myocardium, which play an important role in mitochondrial function and metabolism. In addition, 2-DG administration suppresses sepsis-increased expression of apoptotic inducers Bak and Bax as well as JNK phosphorylation in the myocardium. Conclusions: Glycolytic metabolism plays an important role in mediating sepsis-induced septic cardiomyopathy. The mechanisms may involve regulation of inflammatory response and apoptotic signaling.


Assuntos
Cardiomiopatias/metabolismo , Glicólise/fisiologia , Coração/fisiopatologia , Sepse/metabolismo , Animais , Cardiomiopatias/fisiopatologia , Citocinas/metabolismo , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Modelos Animais de Doenças , Glicólise/efeitos dos fármacos , Coração/efeitos dos fármacos , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Sepse/tratamento farmacológico , Sepse/mortalidade , Sepse/fisiopatologia , Análise de Sobrevida
3.
J Immunol ; 195(2): 672-82, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048146

RESUMO

Cardiac dysfunction is a major consequence of sepsis/septic shock and contributes to the high mortality of sepsis. Innate and inflammatory responses mediated by TLRs play a critical role in sepsis-induced cardiac dysfunction. MicroRNA-146 (miR-146) was first identified as a negative regulator in innate immune and inflammatory responses induced by LPS. This study examined whether miR-146a will have a protective effect on sepsis-induced cardiac dysfunction. Lentivirus-expressing miR-146a (LmiR-146a) or lentivirus-expressing scrambled miR (LmiR-control) was delivered into the myocardium via the right carotid artery. Seven days after transfection, mice were subjected to cecal ligation and puncture (CLP). Untransfected mice were also subjected to CLP-induced sepsis. Cardiac function was examined by echocardiography before and 6 h after CLP. In vitro studies showed that increased miR-146a levels suppress LPS-induced IκBα phosphorylation and inflammatory cytokine production in both H9C2 cardiomyocytes and J774 macrophages. In vivo transfection of LmiR-146a attenuated sepsis-induced cardiac dysfunction. The values for percent ejection fraction and percent fractional shortening in LmiR-146a-transfected CLP mice were significantly greater than in untransfected CLP control. LmiR-146a transfection prevented sepsis-induced NF-κB activity, suppressed IRAK and TRAF6 expression in the myocardium, and attenuated sepsis-induced inflammatory cytokine production in both plasma and peritoneal fluid. In addition, LmiR-146a transfection decreased sepsis-induced infiltration of neutrophils and macrophages into the myocardium. LmiR-146a can also transfect macrophages in the periphery. We conclude that miR-146a attenuates sepsis-induced cardiac dysfunction by preventing NF-κB activation, inflammatory cell infiltration, and inflammatory cytokine production via targeting of IRAK and TRAF6 in both cardiomyocytes and inflammatory monocytic cells.


Assuntos
Insuficiência Cardíaca/terapia , Quinases Associadas a Receptores de Interleucina-1/imunologia , MicroRNAs/imunologia , NF-kappa B/imunologia , Sepse/terapia , Fator 6 Associado a Receptor de TNF/imunologia , Administração Intravenosa , Animais , Artérias Carótidas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/imunologia , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/genética , Lentivirus/genética , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miocárdio/imunologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Cultura Primária de Células , Sepse/complicações , Sepse/genética , Sepse/imunologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética
4.
J Infect Dis ; 214(11): 1773-1783, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27683819

RESUMO

BACKGROUND: This study examined the effect of microRNA-125b (miR-125b) on sepsis-induced cardiac dysfunction. METHODS: Mouse hearts were transfected with lentivirus expressing miR-125b (LmiR-125b) 7 days before cecal ligation and puncture (CLP)-induced sepsis. Cardiac function was examined by echocardiography before and 6 hours after CLP (n = 6/group). Survival was monitored following CLP-induced sepsis (n = 12/group). RESULTS: LmiR-125b transfection significantly attenuated cardiac dysfunction due to CLP-induced sepsis. Fractional shortening and ejection fraction values were significantly (P < .05) higher in the LmiR-125b-treated CLP group than in the untreated CLP group. Survival outcome in LmiR-125b-transfected septic mice was markedly improved, compared with mice with CLP-induced sepsis. Transfection of LmiR-125b into the heart significantly suppressed the expression of ICAM-1 and VCAM-1, decreased the accumulation of macrophages and neutrophils in the myocardium, and decreased serum levels of tumor necrosis factor α and interleukin 1ß by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6)-mediated nuclear factor κB (NF-κB) activation. In addition, sepsis-induced myocardial apoptosis was markedly attenuated by LmiR-125b transfection through suppression of p53, Bax, and Bak1 expression. In vitro transfection of endothelial cells with miR-125b mimics attenuate LPS-induced ICAM-1 and VCAM-1 expression by suppressing TRAF6 and NF-κB activation. CONCLUSIONS: Increased myocardial miR-125b expression attenuates sepsis-induced cardiac dysfunction and improves survival. miR-125b may be a target for septic cardiomyopathy.


Assuntos
Coinfecção/patologia , Insuficiência Cardíaca/prevenção & controle , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Sepse/patologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Coinfecção/complicações , Modelos Animais de Doenças , Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Sepse/complicações , Análise de Sobrevida
5.
J Mol Cell Cardiol ; 89(Pt A): 87-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458524

RESUMO

OBJECTIVE: Activation of PI3K/Akt signaling protects the myocardium from ischemia/reperfusion injury. MicroRNAs have been demonstrated to play an important role in the regulation of gene expression at the post-transcriptional level. In this study, we examined whether miR-130a will attenuate cardiac dysfunction and remodeling after myocardial infarction (MI) via PI3K/Akt dependent mechanism. APPROACHES AND RESULTS: To determine the role of miR-130a in the proliferation and migration of endothelial cells, HUVECs were transfected with miR-130a mimics before the cells were subjected to scratch-induced wound injury. Transfection of miR-130a mimics stimulated the migration of endothelial cells into the wound area and increased phospho-Akt levels. To examine the effect of miR-130a on cardiac dysfunction and remodeling after MI, Lentivirus expressing miR-130a (LmiR-130a) was delivered into mouse hearts seven days before the mice were subjected to MI. Cardiac function was assessed by echocardiography before and for up to 21 days after MI. Ejection fraction (EF%) and fractional shortening (FS%) in the LmiR-130a transfected MI hearts were significantly greater than in LmiR-control and untransfected control MI groups. LmiR-130a transfection increased capillary number and VEGF expression, and decreased collagen deposition in the infarcted myocardium. Importantly, LmiR-130a transfection significantly suppressed PTEN expression and increased the levels of phosphorylated Akt in the myocardium. However, treatment of LmiR-130a-transfected mice with LY294002, a PI3K inhibitor, completely abolished miR-130a-induced attenuation of cardiac dysfunction after MI. CONCLUSIONS: miR-130a plays a critical role in attenuation of cardiac dysfunction and remodeling after MI. The mechanisms involve activation of PI3K/Akt signaling via suppression of PTEN expression.


Assuntos
Coração/fisiopatologia , MicroRNAs/metabolismo , Infarto do Miocárdio/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Apoptose , Cardiotônicos/metabolismo , Movimento Celular , Colágeno/metabolismo , Ativação Enzimática , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Lentivirus/metabolismo , Ligantes , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Microvasos/patologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/enzimologia , Miocárdio/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Toll-Like/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Cell Mol Med ; 19(3): 555-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25351293

RESUMO

Toll-like receptor (TLR)-mediated signalling plays a role in cerebral ischaemia/reperfusion (I/R) injury. Modulation of TLRs has been reported to protect against cerebral I/R injury. This study examined whether modulation of TLR3 with poly (I:C) will induce protection against cerebral I/R injury. Mice were treated with or without Poly (I:C) (n = 8/group) 1 hr prior to cerebral ischaemia (60 min.) followed by reperfusion (24 hrs). Poly (I:C) pre-treatment significantly reduced the infarct volume by 57.2% compared with untreated I/R mice. Therapeutic administration of Poly (I:C), administered 30 min. after cerebral ischaemia, markedly decreased infarct volume by 34.9%. However, Poly (I:C)-induced protection was lost in TLR3 knockout mice. In poly (I:C)-treated mice, there was less neuronal damage in the hippocampus compared with untreated I/R mice. Poly (I:C) treatment induced IRF3 phosphorylation, but it inhibited NF-κB activation in the brain. Poly (I:C) also decreased I/R-induced apoptosis by attenuation of Fas/FasL-mediated apoptotic signalling. In addition, Poly (I:C) treatment decreased microglial cell caspase-3 activity. In vitro data showed that Poly (I:C) prevented hypoxia/reoxygenation (H/R)-induced interaction between Fas and FADD as well as caspase-3 and -8 activation in microglial cells. Importantly, Poly (I:C) treatment induced co-association between TLR3 and Fas. Our data suggest that Poly (I:C) decreases in cerebral I/R injury via TLR3 which associates with Fas, thereby preventing the interaction of Fas and FADD, as well as microglial cell caspase-3 and -8 activities. We conclude that TLR3 modulation by Poly (I:C) could be a potential approach for protection against ischaemic stroke.


Assuntos
Infarto Cerebral/tratamento farmacológico , Proteína de Domínio de Morte Associada a Fas/metabolismo , Poli I-C/uso terapêutico , Receptor 3 Toll-Like/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Caspase 3/biossíntese , Caspase 3/metabolismo , Caspase 8/biossíntese , Caspase 8/metabolismo , Hipóxia Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Receptor 3 Toll-Like/biossíntese , Receptor 3 Toll-Like/genética
7.
Biochim Biophys Acta ; 1842(1): 22-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140513

RESUMO

Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3(-/-)) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3(-/-) and WT mice were subjected to myocardial ischemia (45min) followed by reperfusion for up to 3days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3(-/-) mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3(-/-) mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1ß) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.


Assuntos
Regulação da Expressão Gênica , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Receptor 3 Toll-Like/genética , Animais , Apoptose , Modelos Animais de Doenças , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Índice de Gravidade de Doença , Transdução de Sinais , Receptor 3 Toll-Like/deficiência , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
8.
Biochim Biophys Acta ; 1832(1): 96-104, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22917564

RESUMO

BACKGROUND: Toll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury. METHODS: Male C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1h prior to myocardial ischemia (60min) followed by reperfusion. Untreated mice served as I/R control (n=10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14days. RESULTS: CpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3ß phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection. CONCLUSION: CpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.


Assuntos
Isquemia Miocárdica/cirurgia , Oligodesoxirribonucleotídeos/administração & dosagem , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Receptor Toll-Like 9/agonistas , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Traumatismo por Reperfusão/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
9.
Biochim Biophys Acta ; 1823(7): 1192-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22627090

RESUMO

Recent evidence suggests that the macrophage scavenger receptor class A (SR-A, aka, CD204) plays a role in the induction of innate immune and inflammatory responses. We investigated whether SR-A will cooperate with Toll-like receptors (TLRs) in response to TLR ligand stimulation. Macrophages (J774/a) were treated with Pam2CSK4, (TLR2 ligand), Polyinosinic:polycytidylic acid (Poly I:C) (TLR3 ligand), and Lipopolysaccharides (LPS) (TLR4 ligand) for 15 min in the presence or absence of fucoidan (the SR-A ligand). The levels of phosphorylated IκBα (p-IκBα) were examined by Western blot. We observed that Poly I:C and LPS alone, but not Pam2CSK4 or fucoidan increased the levels of p-IκBα. However, LPS-induced increases in p-IκBα levels were further enhanced when presence of the fucoidan. Immunoprecipitation and double fluorescent staining showed that LPS stimulation promotes SR-A association with TLR4 in the presence of fucoidan. To further confirm our observation, we isolated peritoneal macrophages from SR-A deficient (SR-A(-/-)), TLR4(-/-) and wild type (WT) mice, respectively. The peritoneal macrophages were treated with LPS for 15min in the presence and absence of fucoidan. We observed that LPS-stimulated TNFα and IL-1ß production was further enhanced in the WT macrophages, but did not in either TLR4(-/-) or SR-A(-/-) macrophages, when fucoidan was present. Similarly, in the presence of fucoidan, LPS-induced IκBα phosphorylation, NF-κB binding activity, and association between TLR4 and SR-A were significantly enhanced in WT macrophages compared with LPS stimulation alone. The data suggests that SR-A is needed for LPS-induced inflammatory responses in macrophages.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Receptores Depuradores Classe A/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Sinergismo Farmacológico , Proteínas I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , Fosforilação/efeitos dos fármacos , Polissacarídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Fatores de Tempo
10.
J Immunol ; 187(3): 1458-66, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21709150

RESUMO

This study examined the effect of TLR2 activation by its specific ligand, Pam3CSK4, on cerebral ischemia/reperfusion (I/R) injury. Mice (n = 8/group) were treated with Pam3CSK4 1 h before cerebral ischemia (60 min), followed by reperfusion (24 h). Pam3CSK4 was also given to the mice (n = 8) 30 min after ischemia. Infarct size was determined by triphenyltetrazolium chloride staining. The morphology of neurons in brain sections was examined by Nissl staining. Pam3CSK4 administration significantly reduced infarct size by 55.9% (p < 0.01) compared with untreated I/R mice. Therapeutic treatment with Pam3CSK4 also significantly reduced infarct size by 55.8%. Morphologic examination showed that there was less neuronal damage in the hippocampus of Pam3CSK4-treated mice compared with untreated cerebral I/R mice. Pam3CSK4 treatment increased the levels of Hsp27, Hsp70, and Bcl2, and decreased Bax levels and NF-κB-binding activity in the brain tissues. Administration of Pam3CSK4 significantly increased the levels of phospho-Akt/Akt and phospho-GSK-3ß/GSK-3ß compared with untreated I/R mice. More significantly, either TLR2 deficiency or PI3K inhibition with LY29004 abolished the protection by Pam3CSK4. These data demonstrate that activation of TLR2 by its ligand prevents focal cerebral ischemic damage through a TLR2/PI3K/Akt-dependent mechanism. Of greater significance, these data indicate that therapy with a TLR2-specific agonist during cerebral ischemia is effective in reducing injury.


Assuntos
Infarto da Artéria Cerebral Média/imunologia , Lipopeptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Traumatismo por Reperfusão/imunologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/agonistas , Animais , Ativação Enzimática/imunologia , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/prevenção & controle , Ligantes , Lipopeptídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfatidilinositol 3-Quinase/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/metabolismo
11.
Microsc Microanal ; 19(6): 1428-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24029590

RESUMO

The urinary bladder is a unique organ in that its normal function is storage and release of urine, and vasculature in its wall exhibits specialized features designed to accommodate changes in pressure with emptying and filling. Although we have previously described the fine details of the microvasculature of the urinary bladder of the rabbit and dog, information on the fine details of the microvasculature of the mouse bladder were deemed to be of value because of the increasing use of this species in developing genetic models for studying human disorders. The present study shows that many of the special features of the microvasculature of the mouse urinary bladder are similar to those described in the rabbit and dog, including vessel coiling, abundant collateral circulation, arterial sphincters, and a dense mucosal capillary plexus.


Assuntos
Microvasos/anatomia & histologia , Bexiga Urinária/anatomia & histologia , Animais , Molde por Corrosão , Camundongos , Microscopia
12.
Crit Care Med ; 40(8): 2390-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635047

RESUMO

OBJECTIVE: To determine the role of Toll-like receptor 3 in cardiac dysfunction during polymicrobial sepsis. DESIGN: Controlled animal study. SETTING: University research laboratory. SUBJECTS: Male C57BL/6, wild-type, Toll-like receptor 3-/-. INTERVENTION: Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. Toll-like receptors (TLRs) play a critical role in the pathophysiology of sepsis/septic shock. TLR3 is located in intracellular endosomes, and recognizes double-stranded RNA. This study examined the role of TLR3 in cardiac dysfunction following cecal ligation and puncture (CLP)-induced sepsis. TLR3 knockout (TLR3-/-, n=12) and age-matched wild-type (n=12) mice were subjected to CLP. Cardiac function was measured by echocardiography before and 6 hrs after CLP. MEASUREMENTS AND MAIN RESULTS: CLP resulted in significant cardiac dysfunction as evidenced by decreased ejection fraction by 25.7% and fractional shortening by 29.8%, respectively. However, TLR3-/- mice showed a maintenance of cardiac function at pre-CLP levels. Wild-type mice showed 50% mortality at 58 hrs and 100% mortality at 154 hrs after CLP. In striking contrast, 70% of TLR3-/- mice survived indefinitely, that is, >200 hrs. TLR3 deficiency significantly decreased CLP-induced cardiac-myocyte apoptosis and attenuated CLP-induced Fas and Fas ligand expression in the myocardium. CLP-activation of TLR4-mediated nuclear factor-κB and Toll/IL-1 receptor-domain-containing adapter-inducing interferon-ß-dependant interferon signaling pathways was prevented by TLR3 deficiency. In addition, CLP-increased vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression, and neutrophil and macrophage sequestration in the myocardium were also attenuated in septic TLR3-/- mice. More significantly, adoptive transfer of wild-type bone-marrow stromal cells to TLR3-/- mice abolished the cardioprotective effect in sepsis. CONCLUSIONS: These data indicate that TLR3 plays a deleterious role in mediating cardiac dysfunction in sepsis. Thus, modulation of the TLR3 activity may be useful in preventing cardiac dysfunction in sepsis.


Assuntos
Coração/fisiopatologia , Sepse/fisiopatologia , Receptor 3 Toll-Like/fisiologia , Animais , Apoptose/fisiologia , Western Blotting , Ecocardiografia , Ensaio de Desvio de Mobilidade Eletroforética , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/fisiologia , Peroxidase/metabolismo , Sepse/microbiologia
13.
Am J Physiol Heart Circ Physiol ; 301(3): H848-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21642503

RESUMO

Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. High-mobility group box 1 (HMGB1) serves as a late mediator of lethality in sepsis. We have reported that glucan phosphate (GP) attenuates cardiac dysfunction and increases survival in cecal ligation and puncture (CLP)-induced septic mice. In the present study, we examined the effect of GP on HMGB1 translocation from the nucleus to the cytoplasm in the myocardium of septic mice. GP was administered to mice 1 h before induction of CLP. Sham-operated mice served as control. The levels of HMGB1, Toll-like receptor 4 (TLR4), and NF-κB binding activity were examined. In an in vitro study, H9C2 cardiomyoblasts were treated with lipopolysaccharide (LPS) in the presence or absence of GP. H9C2 cells were also transfected with Ad5-IκBα mutant, a super repressor of NF-κB activity, before LPS stimulation. CLP significantly increased the levels of HMGB1, TLR4, and NF-κB binding activity in the myocardium. In contrast, GP administration attenuated CLP-induced HMGB1 translocation from the nucleus to the cytoplasm and reduced CLP-induced increases in TLR4 and NF-κB activity in the myocardium. In vitro studies showed that GP prevented LPS-induced HMGB1 translocation and NF-κB binding activity. Blocking NF-κB binding activity by Ad5-IκBα attenuated LPS-induced HMGB1 translocation. GP administration also reduced the LPS-stimulated interaction of HMGB1 with TLR4. These data suggest that attenuation of HMGB1 translocation by GP is mediated through inhibition of NF-κB activation in CLP-induced sepsis and that activation of NF-κB is required for HMGB1 translocation.


Assuntos
Glucanos/farmacologia , Proteína HMGB1/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Sepse/prevenção & controle , Análise de Variância , Animais , Ceco/microbiologia , Ceco/cirurgia , Linhagem Celular , Modelos Animais de Doenças , Proteínas I-kappa B/metabolismo , Ligadura , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Mutação , Miócitos Cardíacos/metabolismo , Inibidor de NF-kappaB alfa , Transporte Proteico , Punções , Ratos , Sepse/genética , Sepse/metabolismo , Sepse/microbiologia , Índice de Gravidade de Doença , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Transfecção
14.
Am J Physiol Heart Circ Physiol ; 298(3): H984-91, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061538

RESUMO

Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. In the present study, we examined the effect of Toll-like receptor 2 (TLR2) ligands, peptidoglycan (PGN), and Pam3CSK4 (Pam3) on cardiac function in cecal ligation and puncture (CLP)-induced sepsis in mice. We also investigated whether the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is involved in the effect of TLR2 ligands on cardiac function in CLP mice. PGN was administered to C57B6/L mice 1 h before the induction of CLP. Sham surgically operated mice served as a control. Cardiac function indexes (rate of change in left ventricular pressure, stroke work, cardiac output, and ejection fraction) were examined by a microconductance pressure catheter. Cardiac function was significantly decreased 6 h after CLP-induced sepsis compared with sham-operated control. In contrast, PGN administration attenuated CLP-induced cardiac dysfunction. Importantly, the therapeutic treatment with Pam3 1 h after CLP also significantly attenuated cardiac dysfunction in CLP mice. However, the beneficial effect of TLR2 ligands on cardiac dysfunction in CLP-mice was abolished in TLR2-deficient mice. PGN administration significantly increased the levels of phospho-Akt and phospho-GSK-3beta in the myocardium compared with the levels in untreated CLP mice. PI3K inhibition abolished the PGN-induced attenuation of cardiac dysfunction in CLP mice. In conclusion, these data demonstrate that the administration of TLR2 ligands, PGN, or Pam3 attenuates cardiac dysfunction in septic mice via a TLR2/PI3K-dependent mechanism. More significantly, Pam3 therapeutic treatment will have a potential clinical relevance.


Assuntos
Cardiopatias/tratamento farmacológico , Lipopeptídeos/uso terapêutico , Peptidoglicano/uso terapêutico , Fosfatidilinositol 3-Quinases/fisiologia , Sepse/tratamento farmacológico , Receptor 2 Toll-Like/fisiologia , Animais , Débito Cardíaco/fisiologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Coração/fisiopatologia , Cardiopatias/fisiopatologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/fisiologia , Sepse/fisiopatologia , Transdução de Sinais/fisiologia , Volume Sistólico/fisiologia , Receptor 2 Toll-Like/genética
15.
Cardiovasc Res ; 78(3): 546-53, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18267957

RESUMO

AIMS: The ability of lipopolysaccharide (LPS) pre-treatment to induce cardioprotection following ischaemia/reperfusion (I/R) has been well documented; however, the mechanisms have not been fully elucidated. LPS is a Toll-like receptor 4 (TLR4) ligand. Recent evidence indicates that there is cross-talk between the TLR and phosphoinositide 3-kinase/Akt (PI3K/Akt) signalling pathways. We hypothesized that activation of PI3K/Akt signalling plays a critical role in LPS-induced cardioprotection. METHODS AND RESULTS: To evaluate this hypothesis, we pre-treated mice with LPS 24 h before the hearts were subjected to ischaemia (45 min) and reperfusion (4 h). We examined activation of the PI3K/Akt/GSK-3beta signalling pathway. The effect of PI3K/Akt inhibition on LPS-induced cardioprotection was also evaluated. LPS pre-treatment significantly reduced infarct size (71.25%) compared with the untreated group (9.3+/-1.58 vs. 32.3+/-2.92%, P<0.01). Cardiac myocyte apoptosis and caspase-3 activity in LPS-pre-treated mice were significantly reduced following I/R. LPS pre-treatment significantly increased the levels of phospho-Akt, phospho-GSK-3beta, and heat shock protein 27 in the myocardium. Pharmacological inhibition of PI3K by LY294002 or genetic modulation employing kinase-defective Akt transgenic mice abolished the cardioprotection induced by LPS. CONCLUSION: These results indicate that LPS-induced cardioprotection in I/R injury is mediated through a PI3K/Akt-dependent mechanism.


Assuntos
Lipopolissacarídeos/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Cromonas/farmacologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Morfolinas/farmacologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética
16.
J Neuroimmunol ; 199(1-2): 75-82, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18585792

RESUMO

The brain's resistance to ischemic injury can be transiently augmented by prior exposure to a sub-lethal stress stimulus, i.e. preconditioning. It has been reported that Toll-like receptors (TLRs) are involved in the preconditioning-induced protective effect against ischemic brain injury. In this study, we investigated the effect of preconditioning with a TLR2 specific ligand, Pam3CSK4, on focal cerebral ischemia/reperfusion (I/R) injury in mice. Pam3CSK4 was administered systemically 24 h before the mice were subjected to focal cerebral ischemia (1 h) followed by reperfusion. Cerebral infarct size was determined, blood brain barrier (BBB) permeability was evaluated, and expression of tight-junction proteins were examined after focal cerebral I/R. Results showed that pre-treatment with Pam3CSK significantly reduced brain infarct size (1.9+/-0.5% vs 9.4+/-2.2%) compared with the untreated I/R group. Pam3CSK4 pre-treatment also significantly reduced acute mortality (4.3% vs 24.2%), preserved neurological function (8.22+/-0.64 vs 3.91+/-0.57), and attenuated brain edema (84.61+/-0.08% vs 85.29+/-0.09%) after cerebral I/R. In addition, Pam3CSK4 pre-treatment preserved BBB function as evidenced by decreased leakage of serum albumin (0.528+/-0.026 vs 0.771+/-0.059) and Evans Blue (9.23+/-0.72 microg/mg vs 12.56+/-0.65 microg/mg) into brain tissue. Pam3CSK4 pre-treatment also attenuated the loss of the tight junction protein occludin in response to brain I/R injury. These results suggest that TLR2 is a new target of ischemic preconditioning in the brain and preconditioning with a TLR2 specific ligand will protect the brain from I/R injury.


Assuntos
Isquemia Encefálica/fisiopatologia , Infarto Cerebral/prevenção & controle , Precondicionamento Isquêmico/métodos , Peptídeos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Receptor 2 Toll-Like/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Western Blotting , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Permeabilidade Capilar/efeitos dos fármacos , Infarto Cerebral/etiologia , Infarto Cerebral/patologia , Imuno-Histoquímica , Ligantes , Lipopeptídeos , Masculino , Proteínas de Membrana/efeitos dos fármacos , Camundongos , Ocludina , Traumatismo por Reperfusão/patologia
17.
Cell Death Differ ; 25(5): 966-982, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29358670

RESUMO

The present study investigated whether TLR3 is required for neonatal heart repair and regeneration following myocardial infarction (MI). TLR3 deficient neonatal mice exhibited impaired cardiac functional recovery and a larger infarct size, while wild type neonatal mice showed cardiac functional recovery and small infarct size after MI. The data suggest that TLR3 is essential for the regeneration and repair of damaged neonatal myocardium. In vitro treatment of neonatal cardiomyocytes with a TLR3 ligand, Poly (I:C), significantly enhances glycolytic metabolism, YAP1 activation and proliferation of cardiomyocytes which were prevented by a glycolysis inhibitor, 2-deoxyglucose (2-DG). Administration of 2-DG to neonatal mice abolished cardiac functional recovery and YAP activation after MI, suggesting that TLR3-mediated regeneration and repair of the damaged neonatal myocardium is through glycolytic-dependent YAP1 activation. Inhibition of YAP1 activation abolished Poly (I:C) induced proliferation of neonatal cardiomyocytes. Interestingly, activation of YAP1 increases the expression of miR-152 which represses the expression of cell cycle inhibitory proteins, P27kip1 and DNMT1, leading to cardiomyocyte proliferation. We conclude that TLR3 is required for neonatal heart regeneration and repair after MI. The mechanisms involve glycolytic-dependent YAP1 activation, resulting in miR-152 expression which targets DNMT1/p27kip1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Glicólise , MicroRNAs/biossíntese , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Regeneração , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular , Camundongos , Camundongos Knockout , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fosfoproteínas/genética , Receptor 3 Toll-Like/genética , Proteínas de Sinalização YAP
18.
J Neuroimmunol ; 190(1-2): 101-11, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17884182

RESUMO

Toll-like receptors (TLRs) play a critical role in the induction of innate immune responses which have been implicated in neuronal death induced by global cerebral ischemia/reperfusion (GCI/R). The present study investigated the role and mechanisms-of-action of TLR4 signaling in ischemia-induced hippocampal neuronal death. Neuronal damage, activation of the TLR4 signaling pathway, expression of pro-inflammatory cytokines and activation of the PI3K/Akt signaling pathway in the hippocampal formation (HF) were assessed in wild type (WT) mice and TLR4 knockout (TLR4(-/-)) mice after GCI/R. GCI/R increased expression of TLR4 protein in the hippocampal formation (HF) and other brain structures in WT mice. Phosphorylation of the inhibitor of kappa B (p-IkappaB) as well as activation of nuclear factor kappa B (NFkappaB) increased in the HF of WT mice. In contrast, there were lower levels of p-IkappaB and NFkappaB binding activity in TLR4(-/-) mice subjected to GCI/R. Pro-inflammatory cytokine expression was also decreased, while phosphorylation of Akt and GSK3beta were increased in the HF of TLR4(-/-) mice after GCI/R. These changes correlated with decreased neuronal death/apoptosis in TLR4(-/-) mice following GCI/R. These data suggest that activation of TLR4 signaling contributes to ischemia-induced hippocampal neuronal death. In addition, these data suggest that modulation of TLR4 signaling may attenuate ischemic injury in hippocampal neurons.


Assuntos
Isquemia Encefálica/imunologia , Infarto Cerebral/imunologia , Hipocampo/imunologia , Degeneração Neural/imunologia , Traumatismo por Reperfusão/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Infarto Cerebral/metabolismo , Infarto Cerebral/fisiopatologia , Citocinas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/patologia , Hipocampo/fisiopatologia , Proteínas I-kappa B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/genética , Regulação para Cima/genética , Regulação para Cima/imunologia
19.
Cardiovasc Res ; 68(2): 224-34, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15967420

RESUMO

OBJECTIVE: We have previously demonstrated that nuclear factor kappa B (NFkappaB) activation is needed for the development of cardiac hypertrophy in vivo. NFkappaB is a downstream transcription factor in the Toll-like receptor (TLR)-mediated signaling pathway; therefore, we investigated a role of TLR4 in cardiac hypertrophy in vivo. METHODS: TLR4-deficient mice (C.C3H-Tlr4(lps-d), n = 6), wild-type (WT) genetic background mice (BALB/c, n = 6), TLR4-deleted strain (C57BL/10ScCr, n = 8), and WT controls (C57BL/10ScSn, n = 8) were subjected to aortic banding for 2 weeks. Age-matched surgically operated mice served as controls. In a separate experiment, rapamycin (2 mg/kg, daily) was administered to TLR4-deficient mice and WT mice immediately following aortic banding. The ratio of heart weight/body weight (HW/BW) was calculated, and cardiac myocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. NFkappaB binding activity and the levels of phospho-p70S6K in the myocardium were also examined. RESULTS: Aortic banding significantly increased the ratio of HW/BW by 33.9% (0.601 +/- 0.026 vs. 0.449 +/- 0.004) and cell size by 68.4% in WT mice and by 10.00% (0.543 +/- 0.011 vs. 0.495 +/- 0.005) and by 11.8% in TLR4-deficient mice, respectively, compared with respective sham controls. NFkappaB binding activity and phospho-p70S6K levels were increased by 182.6% and 115.2% in aortic-banded WT mice and by 78.0% and 162.0% in aortic-banded TLR4-deficient mice compared with respective sham controls. In rapamycin-treated aortic-banded mice, the ratio of HW/BW was increased by 18.0% in WT mice and by 3.5% in TLR4-deficient mice compared with respective sham controls. CONCLUSION: Our results demonstrate that TLR4 is a novel receptor contributing to the development of cardiac hypertrophy in vivo and that both the TLR4-mediated pathway and PI3K/Akt/mTOR signaling are involved in the development of cardiac hypertrophy in vivo.


Assuntos
Cardiomegalia/metabolismo , Miocárdio/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/deficiência , Animais , Cardiomegalia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Infarto do Miocárdio , Miocárdio/química , Proteínas Quinases S6 Ribossômicas 70-kDa/análise , Sirolimo/uso terapêutico
20.
Oncotarget ; 7(52): 86926-86936, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27894079

RESUMO

BACKGROUND: Myocardial apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Activation of PI3K/Akt signaling protects the myocardium from I/R injury. This study investigated the role of miR-214 in hypoxia/reoxygenation (H/R)-induced cell damage in vitro and myocardial I/R injury in vivo. METHODS AND RESULTS: H9C2 cardiomyoblasts were transfected with lentivirus expressing miR-214 (LmiR-214) or lentivirus expressing scrambled miR-control (LmiR-control) respectively, to establish cell lines of LmiR-214 and LmiR-control. The cells were subjected to hypoxia for 4 h followed by reoxygenation for 24 h. Transfection of LmiR-214 suppresses PTEN expression, significantly increases the levels of Akt phosphorylation, markedly attenuates LDH release, and enhances the viability of the cells subjected to H/R. In vivo transfection of mouse hearts with LmiR-214 significantly attenuates I/R induced cardiac dysfunction and reduces I/R-induced myocardial infarct size. LmiR-214 transfection significantly attenuates I/R-induced myocardial apoptosis and caspase-3/7 and caspase-8 activity. Increased expression of miR-214 by transfection of LmiR-214 suppresses PTEN expression, increases the levels of phosphorylated Akt, represses Bim1 expression and induces Bad phosphorylation in the myocardium. In addition, in vitro data shows transfection of miR-214 mimics to H9C2 cells suppresses the expression and translocation of Bim1 from cytosol to mitochondria and induces Bad phosphorylation. CONCLUSIONS: Our in vitro and in vivo data suggests that miR-214 protects cells from H/R induced damage and attenuates I/R induced myocardial injury. The mechanisms involve activation of PI3K/Akt signaling by targeting PTEN expression, induction of Bad phosphorylation, and suppression of Bim1 expression, resulting in decreases in I/R-induced myocardial apoptosis.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/genética , Animais , Apoptose/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Caspases/metabolismo , Hipóxia Celular , Linhagem Celular , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/citologia , Oxigênio/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Ratos , Transdução de Sinais/genética , Proteína de Morte Celular Associada a bcl/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA