RESUMO
Reprogramming of somatic cells is associated with overcoming the established epigenetic barrier. Key events in this process are changes in the DNA methylation landscape and histone modifications. Studying the factors affecting epigenetic plasticity will allow not only to reveal the principles underlying cell reprogramming but also to find possible ways to influence this process. Kaiso transcription factor is one of the protein interpreters of methylated DNA. By binding to methylated DNA, Kaiso attracts corepressor complexes affecting chromatin structure. In this work, we showed that the Kaiso gene knockout contributes to more efficient somatic reprogramming by affecting both cell proliferation and DNA methylation. The proposed mechanisms for the increase in the efficiency of somatic reprogramming associated with the Kaiso gene knockout is a decrease in the methylation level of the Oct4 promoter region in mouse embryonic fibroblasts before reprogramming.
Assuntos
Reprogramação Celular , Técnicas de Inativação de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/metabolismoRESUMO
DNA methylation is the most important epigenetic modification involved in the regulation of transcription, imprinting, establishment of X-inactivation, and the formation of a chromatin structure. DNA methylation in the genome is often associated with transcriptional repression and the formation of closed heterochromatin. However, the results of genome-wide studies of the DNA methylation pattern and transcriptional activity of genes have nudged us toward reconsidering this paradigm, since the promoters of many genes remain active despite their methylation. The differences in the DNA methylation distribution in normal and pathological conditions allow us to consider methylation as a diagnostic marker or a therapy target. In this regard, the need to investigate the factors affecting DNA methylation and those involved in its interpretation becomes pressing. Recently, a large number of protein factors have been uncovered, whose ability to bind to DNA depends on their methylation. Many of these proteins act not only as transcriptional activators or repressors, but also affect the level of DNA methylation. These factors are considered potential therapeutic targets for the treatment of diseases resulting from either a change in DNA methylation or a change in the interpretation of its methylation level. In addition to protein factors, a secondary DNA structure can also affect its methylation and can be considered as a therapy target. In this review, the latest research into the DNA methylation landscape in the genome has been summarized to discuss why some DNA regions avoid methylation and what factors can affect its level or interpretation and, therefore, can be considered a therapy target.
RESUMO
Large-scale epidemiological and clinical studies have demonstrated the efficacy of metformin in oncology practice. However, the mechanisms of implementation of the anti-tumor effect of this drug there is still need understanding. In this study we have investigated the effect of metformin on the activity of adenosine deaminase and respectively adenosinergic immunosuppression in tumors and their microenvironment. The material of the study was taken during surgery of breast cacer patients receiveing metformin, and also patients which did not take this drug. The adenosine deaminase activity and substrate (adenosine) and products (inosine, hypoxanthine) concentrations were determined by HPLC. Results of this study suggest that metformin significantly alters catabolism of purine nucleotides in the node breast adenocarcinoma tisue. However, the metformin-induced increase in the adenosine deaminase activity is not sufficient to reduce the level of adenosine in cancer tissue. Thus, in metformin treated patients the adenosine concentration remained unchanged, and inosine and hypoxanthine concentration significantly increased.