Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Adv Neurobiol ; 22: 299-329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073942

RESUMO

This chapter provides an overview of the current stage of human in vitro functional neuronal cultures, their biological application areas, and modalities to analyze their behavior. During the last 10 years, this research area has changed from being practically non-existent to one that is facing high expectations. Here, we present a case study as a comprehensive short history of this process based on extensive studies conducted at NeuroGroup (University of Tampere) and Computational Biophysics and Imaging Group (Tampere University of Technology), ranging from the differentiation and culturing of human pluripotent stem cell (hPSC)-derived neuronal networks to their electrophysiological analysis. After an introduction to neuronal differentiation in hPSCs, we review our work on their functionality and approaches for extending cultures from 2D to 3D systems. Thereafter, we discuss our target applications in neuronal developmental modeling, toxicology, drug screening, and disease modeling. The development of signal analysis methods was required due to the unique functional and developmental properties of hPSC-derived neuronal cells and networks, which separate them from their much-used rodent counterparts. Accordingly, a line of microelectrode array (MEA) signal analysis methods was developed. This work included the development of action potential spike detection methods, entropy-based methods and additional methods for burst detection and quantification, joint analysis of spikes and bursts to analyze the spike waveform compositions of bursts, assessment methods for network synchronization, and computational simulations of synapses and neuronal networks.


Assuntos
Potenciais de Ação , Técnicas de Cultura de Células/métodos , Eletrofisiologia/métodos , Microeletrodos , Células-Tronco Neurais/citologia , Neurônios/citologia , Humanos
3.
Front Comput Neurosci ; 11: 40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620291

RESUMO

Neuronal networks are often characterized by their spiking and bursting statistics. Previously, we introduced an adaptive burst analysis method which enhances the analysis power for neuronal networks with highly varying firing dynamics. The adaptation is based on single channels analyzing each element of a network separately. Such kind of analysis was adequate for the assessment of local behavior, where the analysis focuses on the neuronal activity in the vicinity of a single electrode. However, the assessment of the whole network may be hampered, if parts of the network are analyzed using different rules. Here, we test how using multiple channels and measurement time points affect adaptive burst detection. The main emphasis is, if network-wide adaptive burst detection can provide new insights into the assessment of network activity. Therefore, we propose a modification to the previously introduced inter-spike interval (ISI) histogram based cumulative moving average (CMA) algorithm to analyze multiple spike trains simultaneously. The network size can be freely defined, e.g., to include all the electrodes in a microelectrode array (MEA) recording. Additionally, the method can be applied on a series of measurements on the same network to pool the data for statistical analysis. Firstly, we apply both the original CMA-algorithm and our proposed network-wide CMA-algorithm on artificial spike trains to investigate how the modification changes the burst detection. Thereafter, we use the algorithms on MEA data of spontaneously active chemically manipulated in vitro rat cortical networks. Moreover, we compare the synchrony of the detected bursts introducing a new burst synchrony measure. Finally, we demonstrate how the bursting statistics can be used to classify networks by applying k-means clustering to the bursting statistics. The results show that the proposed network wide adaptive burst detection provides a method to unify the burst definition in the whole network and thus improves the assessment and classification of the neuronal activity, e.g., the effects of different pharmaceuticals. The results indicate that the novel method is adaptive enough to be usable on networks with different dynamics, and it is especially feasible when comparing the behavior of differently spiking networks, for example in developing networks.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3333-3338, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060611

RESUMO

Developing neuronal populations are assumed to increase their synaptic interactions and generate synchronized activity, such as bursting, during maturation. These effects may arise from increasing interactions of neuronal populations and increasing simultaneous intra-population activity in developing networks. In this paper, we investigated the neuronal network activity and its complexity by means of self-similarity during neuronal network development. We studied the phenomena using computational neuronal network models and actual in vitro microelectrode array data measured from a developing neuronal network of dissociated mouse cortical neurons. To achieve this, we assessed the spiking and bursting characteristics of the networks, and computed the signal complexity with Sample Entropy. The results show that we can relate increasing simultaneous activity in a neuronal population with decreasing entropy, and track the network development and maturation using this. We can conclude that the complexity of neuronal network signals decreases during the maturation. This can emerge from the fact that as networks mature, they exhibit more synchronous activity, thus decreasing the complexity of its signaling. However, increasing the number of interacting populations has lesser effect on the signal complexity. The entropy based measure provides a tool to assess the complexity of the neuronal network activity, and can be useful in the assessment of developing networks or the effects of drugs and toxins on their functioning.


Assuntos
Neurônios , Potenciais de Ação , Animais , Fenômenos Eletrofisiológicos , Entropia , Camundongos , Microeletrodos , Rede Nervosa
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1595-1598, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268633

RESUMO

In this paper, we study neuronal network analysis based on microelectrode measurements. We search for potential relations between time correlated changes in spectral distributions and synchrony for neuronal network activity. Spectral distribution is quantified by spectral entropy as a measure of uniformity/complexity and this measure is calculated as a function of time for the recorded neuronal signals, i.e., time variant spectral entropy. Time variant correlations in the spectral distributions between different parts of a neuronal network, i.e., of concurrent measurements via different microelectrodes, are calculated to express the relation with a single scalar. We demonstrate these relations with in vivo rat hippocampal recordings, and observe the time courses of the correlations between different regions of hippocampus in three sequential recordings. Additionally, we evaluate the results with a commonly employed causality analysis method to assess the possible correlated findings. Results show that time correlated spectral entropy reveals different levels of interrelations in neuronal networks, which can be interpreted as different levels of neuronal network synchrony.


Assuntos
Entropia , Animais , Hipocampo , Microeletrodos , Ratos
6.
Front Comput Neurosci ; 10: 112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803660

RESUMO

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26737032

RESUMO

Microelectrode arrays (MEAs) are used to study the electrical activity in brain slices and neuronal cultures. MEA experiments for the analysis of electrical stimulation responses require the tissue or culture to be prone to stimulation. For brain slices, potential stimulation sites may be directly visible in microscope, in which case the determination of stimulability at those locations is sufficient. In unstructured neuronal cultures, potential stimulation sites may not be known a priori, and spatial stimulability screening should be performed. Considering, e.g., 59 microelectrode sites, each to be stimulated several times, may result in long screening times, unacceptable with a MEA system without an integrated CO2 incubator, or in high stimulation effects on the networks. Here, we describe an implementation of a fast stimulation protocol employing pseudorandom stimulation site switching aiming at alleviating the network effects of the stimulability screening. In this paper, we show the usability of the proposed protocol by first detecting stimulable locations and subsequently apply repeated stimulation on the identified potentially stimulable locations to observe an exemplary neuronal pathway.


Assuntos
Encéfalo/patologia , Microeletrodos , Estimulação Elétrica/métodos , Humanos , Rede Nervosa , Neurônios/patologia , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador , Software
8.
Artigo em Inglês | MEDLINE | ID: mdl-26737350

RESUMO

In this paper, we propose employing entropy values to quantify action potential bursts in electrophysiological measurements from the brain and neuronal cultures. Conventionally in the electrophysiological signal analysis, bursts are quantified by means of conventional measures such as their durations, and number of spikes in bursts. Here our main aim is to device metrics for burst quantification to provide for enhanced burst characterization. Entropy is a widely employed measure to quantify regularity/complexity of time series. Specifically, we investigate the applicability and differences of spectral entropy and sample entropy in the quantification of bursts in in vivo rat hippocampal measurements and in in vitro dissociated rat cortical cell culture measurement done with microelectrode arrays. For the task, an automatized and adaptive burst detection method is also utilized. Whereas the employed metrics are known from other applications, they are rarely employed in the assessment of burst in electrophysiological field potential measurements. Our results show that the proposed metrics are potential for the task at hand.


Assuntos
Potenciais de Ação/fisiologia , Eletrofisiologia/métodos , Hipocampo/fisiologia , Neurônios/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Fenômenos Eletrofisiológicos , Eletrofisiologia/instrumentação , Entropia , Hipocampo/citologia , Microeletrodos , Ratos Wistar , Processamento de Sinais Assistido por Computador
9.
Artigo em Inglês | MEDLINE | ID: mdl-22723778

RESUMO

In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI) histograms. Moreover, the algorithm calculates ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average (CMA) and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA) data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA