Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 23(12): e55191, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36256516

RESUMO

Autophagy has emerged as the prime machinery for implementing organelle quality control. In the context of mitophagy, the ubiquitin E3 ligase Parkin tags impaired mitochondria with ubiquitin to activate autophagic degradation. Although ubiquitination is essential for mitophagy, it is unclear how ubiquitinated mitochondria activate autophagosome assembly locally to ensure efficient destruction. Here, we report that Parkin activates lipid remodeling on mitochondria targeted for autophagic destruction. Mitochondrial Parkin induces the production of phosphatidic acid (PA) and its subsequent conversion to diacylglycerol (DAG) by recruiting phospholipase D2 and activating the PA phosphatase, Lipin-1. The production of DAG requires mitochondrial ubiquitination and ubiquitin-binding autophagy receptors, NDP52 and optineurin (OPTN). Autophagic receptors, via Golgi-derived vesicles, deliver an autophagic activator, EndoB1, to ubiquitinated mitochondria. Inhibition of Lipin-1, NDP52/OPTN, or EndoB1 results in a failure to produce mitochondrial DAG, autophagosomes, and mitochondrial clearance, while exogenous cell-permeable DAG can induce autophagosome production. Thus, mitochondrial DAG production acts downstream of Parkin to enable the local assembly of autophagosomes for the efficient disposal of ubiquitinated mitochondria.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Lipídeos
2.
J Biol Chem ; 290(22): 13862-74, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25861987

RESUMO

Mutations in PARKIN (PARK2), an ubiquitin ligase, cause early onset Parkinson disease. Parkin was shown to bind, ubiquitinate, and target depolarized mitochondria for destruction by autophagy. This process, mitophagy, is considered crucial for maintaining mitochondrial integrity and suppressing Parkinsonism. Here, we report that under moderate mitochondrial stress, parkin does not translocate to mitochondria to induce mitophagy; rather, it stimulates mitochondrial connectivity. Mitochondrial stress-induced fusion requires PINK1 (PARK6), mitofusins, and parkin ubiquitin ligase activity. Upon exposure to mitochondrial toxins, parkin binds α-synuclein (PARK1), and in conjunction with the ubiquitin-conjugating enzyme Ubc13, stimulates K63-linked ubiquitination. Importantly, α-synuclein inactivation phenocopies parkin overexpression and suppresses stress-induced mitochondria fission, whereas Ubc13 inactivation abrogates parkin-dependent mitochondrial fusion. The convergence of parkin, PINK1, and α-synuclein on mitochondrial dynamics uncovers a common function of these PARK genes in the mitochondrial stress response and provides a potential physiological basis for the prevalence of α-synuclein pathology in Parkinson disease.


Assuntos
Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/química , Feminino , Fibroblastos/metabolismo , Inativação Gênica , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Mitofagia , Mutação , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Fosforilação , Ubiquitina/química
3.
J Cell Sci ; 127(Pt 22): 4954-63, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25271058

RESUMO

Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress. In response to glucose starvation, mitofusin 1 (MFN1) becomes associated with the protein deacetylase HDAC6. This interaction leads to MFN1 deacetylation and activation, promoting mitochondrial fusion. Deficiency in HDAC6 or MFN1 prevents mitochondrial fusion induced by glucose deprivation. Unexpectedly, failure to undergo fusion does not acutely affect mitochondrial adaptive energy production; instead, it causes excessive production of mitochondrial reactive oxygen species and oxidative damage, a defect suppressed by an acetylation-resistant MFN1 mutant. In mice subjected to fasting, skeletal muscle mitochondria undergo dramatic fusion. Remarkably, fasting-induced mitochondrial fusion is abrogated in HDAC6-knockout mice, resulting in extensive mitochondrial degeneration. These findings show that adaptive mitochondrial fusion protects metabolically challenged mitochondria.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilação , Animais , GTP Fosfo-Hidrolases/genética , Desacetilase 6 de Histona , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Camundongos , Dinâmica Mitocondrial , Estresse Oxidativo
4.
EMBO Rep ; 15(11): 1175-83, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205686

RESUMO

During muscle regeneration, the transcription factor Pax7 stimulates the differentiation of satellite cells (SCs) toward the muscle lineage but restricts adipogenesis. Here, we identify HDAC4 as a regulator of Pax7-dependent muscle regeneration. In HDAC4-deficient SCs, the expression of Pax7 and its target genes is reduced. We identify HDAC4-regulated Lix1 as a Pax7 target gene required for SC proliferation. HDAC4 inactivation leads to defective SC proliferation, muscle regeneration, and aberrant lipid accumulation. Further, expression of the brown adipose master regulator Prdm16 and its inhibitory microRNA-133 are also deregulated. Thus, HDAC4 is a novel regulator of Pax7-dependent SC proliferation and potentially fate determination in regenerating muscle.


Assuntos
Histona Desacetilases/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/genética , Metabolismo dos Lipídeos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/genética , Proteínas/genética , Proteínas/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Neurodegener Dis ; 15(6): 339-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360702

RESUMO

Aberrant accumulation of protein aggregates is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although a buildup of protein aggregates frequently leads to cell death, whether it is the key pathogenic factor in driving neurodegenerative disease remains controversial. HDAC6, a cytosolic ubiquitin-binding deacetylase, has emerged as an important regulator of ubiquitin-dependent quality control autophagy, a lysosome-dependent degradative system responsible for the disposal of misfolded protein aggregates and damaged organelles. Here, we show that in cell models HDAC6 plays a protective role against multiple disease-associated and aggregation-prone cytosolic proteins by facilitating their degradation. We further show that HDAC6 is required for efficient localization of lysosomes to protein aggregates, indicating that lysosome targeting to autophagic substrates is regulated. Supporting a critical role of HDAC6 in protein aggregate disposal in vivo, genetic ablation of HDAC6 in a transgenic SOD1G93A mouse, a model of ALS, leads to dramatic accumulation of ubiquitinated SOD1G93A protein aggregates. Surprisingly, despite a robust buildup of SOD1G93A aggregates, deletion of HDAC6 only moderately modified the motor phenotypes. These findings indicate that SOD1G93A aggregation is not the only determining factor to drive neurodegeneration in ALS, and that HDAC6 likely modulates neurodegeneration through additional mechanisms beyond protein aggregate clearance.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ubiquitina/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Autofagia/genética , Modelos Animais de Doenças , Histona Desacetilases/metabolismo , Lisossomos/metabolismo , Camundongos Transgênicos
6.
Mol Cells ; 38(4): 343-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728750

RESUMO

Fiber type-specific programs controlled by the transcription factor MEF2 dictate muscle functionality. Here, we show that HDAC4, a potent MEF2 inhibitor, is predominantly localized to the nuclei in fast/glycolytic fibers in contrast to the sarcoplasm in slow/oxidative fibers. The cytoplasmic localization is associated with HDAC4 hyper-phosphorylation in slow/oxidative-fibers. Genetic reprogramming of fast/glycolytic fibers to oxidative fibers by active CaMKII or calcineurin leads to increased HDAC4 phosphorylation, HDAC4 nuclear export, and an increase in markers associated with oxidative fibers. Indeed, HDAC4 represses the MEF2-dependent, PGC-1α-mediated oxidative metabolic gene program. Thus differential phosphorylation and localization of HDAC4 contributes to establishing fiber type-specific transcriptional programs.


Assuntos
Histona Desacetilases/genética , Fibras Musculares Esqueléticas/fisiologia , Animais , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Histona Desacetilases/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/enzimologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transgenes
7.
Biomaterials ; 41: 89-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25522968

RESUMO

Spinal cord injury (SCI) is still a worldwide clinical challenge for which there is no viable therapeutic method. We focused on developing combinatorial methods targeting the complex pathological process of SCI. In this study, we implanted linear-ordered collagen scaffold (LOCS) fibers with collagen binding brain-derived neurotrophic factor (BDNF) by tagging a collagen-binding domain (CBD) (LOCS + CBD-BDNF) in completely transected canine SCI with multisystem rehabilitation to validate its potential therapeutic effect through a long-term (38 weeks) observation. We found that LOCS + CBD-BDNF implants strikingly promoted locomotion and functional sensory recovery, with some dogs standing unassisted and transiently moving. Further histological analysis showed that administration of LOCS + CBD-BDNF reduced lesion volume, decreased collagen deposits, promoted axon regeneration and improved myelination, leading to functional recovery. Collectively, LOCS + CBD-BDNF showed striking therapeutic effect on completely transected canine SCI model and it is the first time to report such breakthrough in the war with SCI. Undoubtedly, it is a potentially promising therapeutic method for SCI paralysis or other movement disorders caused by neurological diseases in the future.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Colágeno/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Bovinos , Cães , Humanos , Bainha de Mielina/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA