Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806388

RESUMO

The interactions between humans and unmanned aerial vehicles (UAVs), whose applications are increasing in the civilian field rather than for military purposes, are a popular future research area. Human-UAV interactions are a challenging problem because UAVs move in a three-dimensional space. In this paper, we present an intelligent human-UAV interaction approach in real time based on machine learning using wearable gloves. The proposed approach offers scientific contributions such as a multi-mode command structure, machine-learning-based recognition, task scheduling algorithms, real-time usage, robust and effective use, and high accuracy rates. For this purpose, two wearable smart gloves working in real time were designed. The signal data obtained from the gloves were processed with machine-learning-based methods and classified multi-mode commands were included in the human-UAV interaction process via the interface according to the task scheduling algorithm to facilitate sequential and fast operation. The performance of the proposed approach was verified on a data set created using 25 different hand gestures from 20 different people. In a test using the proposed approach on 49,000 datapoints, process time performance of a few milliseconds was achieved with approximately 98 percent accuracy.


Assuntos
Aeronaves , Dispositivos Eletrônicos Vestíveis , Algoritmos , Gestos , Humanos , Aprendizado de Máquina
2.
ScientificWorldJournal ; 2013: 581846, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935424

RESUMO

One of the widely used methods for classification that is a decision-making process is artificial immune systems. Artificial immune systems based on natural immunity system can be successfully applied for classification, optimization, recognition, and learning in real-world problems. In this study, a reinforcement learning based artificial immune classifier is proposed as a new approach. This approach uses reinforcement learning to find better antibody with immune operators. The proposed new approach has many contributions according to other methods in the literature such as effectiveness, less memory cell, high accuracy, speed, and data adaptability. The performance of the proposed approach is demonstrated by simulation and experimental results using real data in Matlab and FPGA. Some benchmark data and remote image data are used for experimental results. The comparative results with supervised/unsupervised based artificial immune system, negative selection classifier, and resource limited artificial immune classifier are given to demonstrate the effectiveness of the proposed new method.


Assuntos
Inteligência Artificial , Aprendizagem , Algoritmos , Humanos , Memória Imunológica
3.
ScientificWorldJournal ; 2013: 160687, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935409

RESUMO

DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.


Assuntos
Algoritmos , DNA/genética , Simulação por Computador
4.
ScientificWorldJournal ; 2013: 805343, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935433

RESUMO

Nowadays, the increasing use of group elevator control systems owing to increasing building heights makes the development of high-performance algorithms necessary in terms of time and energy saving. Although there are many studies in the literature about this topic, they are still not effective enough because they are not able to evaluate all features of system. In this paper, a new approach of immune system-based optimal estimate is studied for dynamic control of group elevator systems. The method is mainly based on estimation of optimal way by optimizing all calls with genetic, immune system and DNA computing algorithms, and it is evaluated with a fuzzy system. The system has a dynamic feature in terms of the situation of calls and the option of the most appropriate algorithm, and it also adaptively works in terms of parameters such as the number of floors and cabins. This new approach which provides both time and energy saving was carried out in real time. The experimental results comparatively demonstrate the effects of method. With dynamic and adaptive control approach in this study carried out, a significant progress on group elevator control systems has been achieved in terms of time and energy efficiency according to traditional methods.


Assuntos
Elevadores e Escadas Rolantes , Gerenciamento do Tempo , Algoritmos
5.
ISA Trans ; 53(2): 220-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24296116

RESUMO

Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA