Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(37): 7122-7131, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35959561

RESUMO

Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.


Assuntos
Técnicas Biossensoriais , Líquidos Corporais , Próteses e Implantes
2.
Adv Healthc Mater ; 10(17): e2100374, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991046

RESUMO

Surface electromyography (EMG) is used as a medical diagnostic and to control prosthetic limbs. Electrode arrays that provide large-area, high density recordings have the potential to yield significant improvements in both fronts, but the need remains largely unfulfilled. Here, digital fabrication techniques are used to make scalable electrode arrays that capture EMG signals with mm spatial resolution. Using electrodes made of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composites with the biocompatible ionic liquid (IL) cholinium lactate, the arrays enable high quality spatiotemporal recordings from the forearm of volunteers. These recordings allow to identify the motions of the index, little, and middle fingers, and to directly visualize the propagation of polarization/depolarization waves in the underlying muscles. This work paves the way for scalable fabrication of cutaneous electrophysiology arrays for personalized medicine and highly articulate prostheses.


Assuntos
Líquidos Iônicos , Eletrodos , Eletromiografia , Antebraço , Humanos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA