Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Environ Sci Technol ; 57(51): 21898-21907, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085154

RESUMO

The characteristics and stability of ozone nanobubbles (NBs) were investigated for the first time under different preparation conditions and freshwater conditions (i.e., pH, natural organic matter [NOM], carbonate, calcium, and temperature) for an extended period. Two oxygen gas flow rates (4 and 1 L/min) used in ozone NB generation affected the characteristics and stability of ozone NBs. The ozone NBs generated at a high initial dissolved ozone (12.5 mg/L) concentration showed a much higher brightness during measurements than the ozone NBs generated at a low initial dissolved ozone concentration (1 mg/L). The former also exhibited a higher negative surface charge and higher stability in comparison to the latter. The stability and half-lives of ozone NBs followed the order of 3 mM Ca2+ < pH 3 < NOM with high specific ultraviolet absorbance at 254 nm (SUVA254 = 4.1 L/mg·m) < pH 7 < pH 9, while the effects of carbonate and temperature were insignificant. Ozone NBs were relatively stable in waters for a long period (e.g., ≥ 60 days) except for high hardness or low pH conditions. Higher levels of hydroxyl radicals were produced from ozone NB solutions as compared to conventional ozonation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Água Doce , Oxigênio , Radical Hidroxila , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 57(47): 18563-18574, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36648192

RESUMO

Bromine and iodine species are precursors for forming disinfection byproducts in finished drinking waters. Our study incorporates spatial and temporal data to quantify concentrations of inorganic (bromide (Br-), iodide (I-), and iodate (IO3-)), organic, and total bromine (BrT) and iodine (IT) species from 286 drinking water sources and 7 wastewater effluents across the United States. Br- ranged from <5-7800 µg/L (median of 62 µg/L in surface water (SW) and 95 µg/L in groundwater (GW)). I- was detected in 41% of SW (1-72 µg/L, median = <1 µg/L) and 62% of GW (<1-250 µg/L, median = 3 µg/L) samples. The median Br-/I- ratio in SW and GW was 22 µg/µg and 16 µg/µg, respectively, in paired samples with detect Br- and I-. BrT existed primarily as Br-, while IT was present as I-, IO3-, and/or total organic iodine (TOI). Inorganic iodine species (I- and IO3-) were predominant in GW samples, accounting for 60-100% of IT; however, they contributed to only 20-50% of IT in SW samples. The unknown fraction of IT was attributed to TOI. In lakes, seasonal cycling of I-species was observed and was presumably due to algal productivity. Finally, Spearman Rank Correlation tests revealed a strong correlation between Br- and IT in SW (RBr-,IT = 0.83) following the log10 (Br-, µg/L) = 0.65 × log10 (IT, µg/L) - 0.17 relationship. Br- and I- in treated wastewater effluents (median Br- = 234 µg/L, median I- = 5 µg/L) were higher than drinking water sources.


Assuntos
Desinfetantes , Água Potável , Iodo , Poluentes Químicos da Água , Purificação da Água , Iodo/análise , Desinfecção , Bromo , Águas Residuárias , Halogenação , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 56(2): 1244-1256, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34962797

RESUMO

The increasing occurrence of harmful algal blooms (HABs) in surface waters may increase the input of algal organic matter (AOM) in drinking water. The formation of halogenated disinfection byproducts (DBPs) during combined chlorination and chloramination of AOM and natural organic matter (NOM) in the presence of bromide and iodide and haloform formation during halogenation of model compounds were studied. Results indicated that haloform/halogen consumption ratios of halogens reacting with amino acids (representing proteins present in AOM) follow the order iodine > bromine > chlorine, with ratios for iodine generally 1-2 orders of magnitude greater than those for chlorine (0.19-2.83 vs 0.01-0.16%). This indicates that iodine is a better halogenating agent than chlorine and bromine. In contrast, chlorine or bromine shows higher ratios for phenols (representing the phenolic structure of humic substances present in NOM). Consistent with these observations, chloramination of AOM extracted from Microcystis aeruginosa in the presence of iodide produced 3 times greater iodinated trihalomethanes than those from Suwannee River NOM isolate. Cytotoxicity and genotoxicity of disinfected algal-impacted waters evaluated by Chinese hamster ovary cell bioassays both follow the order chloramination > prechlorination-chloramination > chlorination. This trend is in contrast to additive toxicity calculations based on the concentrations of measured DBPs since some toxic iodinated DBPs were not identified and quantified, suggesting the necessity of experimentally analyzing the toxicity of disinfected waters. During seasonal HAB events, disinfection practices warrant optimization for iodide-enriched waters to reduce the toxicity of finished waters.


Assuntos
Desinfetantes , Iodo , Poluentes Químicos da Água , Purificação da Água , Animais , Bromo/química , Células CHO , Cloro/química , Cricetinae , Cricetulus , Desinfetantes/química , Desinfecção/métodos , Halogenação , Halogênios , Iodetos , Iodo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
4.
J Environ Sci (China) ; 117: 242-252, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725076

RESUMO

Municipal wastewater discharge is considered as one of the main sources of N-nitrosamine precursors which can impact the qualities of downstream source waters and reclaimed wastewaters for potable reuse. NNitrosamine precursors can be removed to various degrees during biological wastewater treatment (e.g., the activated sludge (AS) process). So far, little is known about the impact of the AS process on N-nitrosamine formation under practical disinfection condition (e.g., uniform formation condition (UFC)). In this study, N-nitrosamine UFC from selected model compounds, sewage components (i.e., blackwaters and greywaters) and sewage samples were comprehensively investigated during batch AS treatment tests. NNitrosodimethylamine (NDMA) formation from the tested precursor compounds (i.e., trimethylamine (TMA) and sumatriptan (SMTR)) under UFC chloramination decreased mostly after 6 or 24 hr treatment with different types of AS (i.e., domestic rural AS, domestic urban AS, and textile AS), and the reductions in NDMA UFC were comparable to their NDMA formation potential (FP) reductions. In urine and feces blackwaters, NDMA UFC increased after 6 or 24 hr treatment with the domestic (i.e., rural and urban) AS, while NDMA FP decreased substantially. The increases in NDMA UFC after AS treatment was presumably attributed to the removal of bulk organic matters (e.g., dissolved organic carbon (DOC)) which favored NDMA formation under UFC. On the other hand, in laundry greywaters having relatively abundant DOC, N-nitrosamine UFC was less affected by DOC removal before or after AS treatment, but decreased to similar degrees with N-nitrosamine FP. In sewage samples collected from wastewater treatment plants, N-nitrosamines UFC tended to increase or remain constant during AS treatment, despite the decreases in their FPs. These results suggest that biological wastewater treatment (e.g., the AS process) may not effectively reduce N-nitrosamine formation (e.g., measured under UFC) partially because the concurrent removal of bulk organic matters (e.g., DOC) favored N-nitrosamine formation in s econdary effluents.


Assuntos
Nitrosaminas , Poluentes Químicos da Água , Purificação da Água , Esgotos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
5.
J Environ Sci (China) ; 117: 151-160, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725067

RESUMO

Algal blooms and wastewater effluents can introduce algal organic matter (AOM) and effluent organic matter (EfOM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts (DBPs) during chlorination and chloramination from various types of dissolved organic matter (DOM, e.g., natural organic matter (NOM), AOM, and EfOM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was observed in NOM than AOM and EfOM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor (BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance (SUVA) increased. AOM favored the formation of iodinated THMs (I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor (ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Brometos , Desinfecção , Matéria Orgânica Dissolvida , Halogenação , Iodetos , Trialometanos , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 51(15): 8272-8282, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666088

RESUMO

Wildfires can elevate dissolved organic matter (DOM) levels due to ash input and algal growth in source waters, and consequently impacting disinfection byproduct (DBP) formation in finished water; however, it remains unclear how quality and quantity of overall allochthonous and autochthonous DOM as well as associated DBP formation are changed during an entire algal life cycle. Microcystis aeruginosa was cultured in the medium containing low and high concentrations [10% and 65% (v/v)] of black and white ash water extracts (BE and WE) to study dynamic changes of carbonaceous, nitrogenous, and oxygenated DBP precursors during algal growth. DOM was characterized by absorption and fluorescence spectroscopy and chlorination/chloramination-based DBP formation experiments. Throughout the entire experiment, C-DBP precursors in the control ranged from 2.41 to 3.09 mmol/mol-C. In the treatment with 10% BE, the amount of C-DBP precursors decreased from 6.8 to 3.0 mmol/mol-C at initial-exponential phase then increased to 4.2 mmol/mol-C at death phase. The same trend was observed for O-DBP precursors. However, these dynamic changes of C- and O-DBP precursors exhibited opposite patterns in 65% extracts. Similar patterns were also observed in the WE treatments. On the other hand, N-DBP precursors continuously declined in all treatments. These results indicate that postfire ash loading and algal bloom stage may significantly affect DBP formation in source water.


Assuntos
Desinfecção , Microcystis , Purificação da Água , Halogenação , Poluentes Químicos da Água
7.
Environ Sci Technol ; 51(12): 7101-7110, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28537710

RESUMO

Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.


Assuntos
Substâncias Húmicas , Nanotubos de Carbono , Adsorção , Cromatografia em Gel , Compostos Orgânicos
8.
Environ Sci Technol ; 51(16): 9288-9296, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28700222

RESUMO

Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.


Assuntos
Nanotubos de Carbono , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Poluentes Químicos da Água/farmacocinética , Adsorção , Animais , Disponibilidade Biológica , Peixes , Nanoestruturas
9.
J Environ Sci (China) ; 58: 155-162, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774604

RESUMO

The main objective of this study was to assess the combined use of chlorine dioxide (ClO2) and chlorine (Cl2) on the speciation and kinetics of disinfection by-product (DBP) formation in swimming pools using synthetic pool waters prepared with a body fluid analog (BFA) and/or fresh natural water. At 1:25 (mass ratio) of ClO2 to Cl2, there was no significant reduction in the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) for both BFA solution and natural water compared to the application of Cl2 alone. When the mass ratio of ClO2 to Cl2 increased to 1:1, substantial decreases in both THMs and HAAs were observed in the natural water, while there was almost no change of DBP formations in the BFA solution. Haloacetonitriles and halonitromethanes levels in both water matrices remained similar. In the presence of bromide, the overall DBP formation increased in both BFA solution and natural water. For the DBP formation kinetics, after 72hr of contact time, very low formation of THMs and HAAs was observed for the use of ClO2 only. Compared to Cl2 control, however, applying the 1:1 mixture of ClO2/Cl2 reduced THMs by >60% and HAAs by >50%. Chlorite was maintained below 1.0mg/L, while the formation of chlorate significantly increased over the reaction time. Finally, in a bench-scale indoor pool experiment, applying ClO2 and Cl2 simultaneously produced less THMs compared to Cl2 control and kept chlorite at <0.4mg/L, while HAAs and chlorate accumulated over 4-week operation period.


Assuntos
Compostos Clorados/química , Cloro/química , Desinfetantes/química , Óxidos/química , Piscinas , Purificação da Água/métodos , Desinfecção/métodos
10.
Environ Sci Technol ; 50(17): 9583-91, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27467860

RESUMO

Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies.


Assuntos
Brometos , Purificação da Água , Animais , Células CHO , Cricetulus , Desinfetantes , Desinfecção , Poluentes Químicos da Água
11.
Environ Sci Technol ; 50(24): 13239-13248, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993049

RESUMO

A comparison of loadings of N-nitrosamines and their precursors from different source water categories is needed to design effective source water blending strategies. Previous research using Formation Potential (FP) chloramination protocols (high dose and prolonged contact times) raised concerns about precursor loadings from various source water categories, but differences in the protocols employed rendered comparisons difficult. In this study, we applied Uniform Formation Condition (UFC) chloramination and ozonation protocols mimicking typical disinfection practice to compare loadings of ambient specific and total N-nitrosamines as well as chloramine-reactive and ozone-reactive precursors in 47 samples, including 6 pristine headwaters, 16 eutrophic waters, 4 agricultural runoff samples, 9 stormwater runoff samples, and 12 municipal wastewater effluents. N-Nitrosodimethylamine (NDMA) formation from UFC and FP chloramination protocols did not correlate, with NDMA FP often being significant in samples where no NDMA formed under UFC conditions. N-Nitrosamines and their precursors were negligible in pristine headwaters. Conventional, and to a lesser degree, nutrient removal wastewater effluents were the dominant source of NDMA and its chloramine- and ozone-reactive precursors. While wastewater effluents were dominant sources of TONO and their precursors, algal blooms, and to a lesser degree agricultural or stormwater runoff, could be important where they affect a major fraction of the water supply.


Assuntos
Dimetilnitrosamina , Poluentes Químicos da Água , Água Potável , Nitrosaminas , Águas Residuárias , Purificação da Água
12.
Environ Sci Technol ; 49(10): 5921-9, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25894116

RESUMO

Wildfire occurrence and intensity are increasing worldwide causing severe disturbances to forest watersheds used for potable water supply. The effects of wildfire on drinking water quality are not well understood, especially in terms of terrestrial dissolved organic matter (DOM) and DOM-associated formation of disinfection byproducts (DBP). As the forest floor layer is a major source of terrestrial DOM, we investigated characteristics and DBP formation of water extractable organic matter (WEOM) from the 0-5 cm depth of nonburned detritus (control) and burned detritus with black ash (moderate severity) and white ash (high severity) associated with the 2013 Rim Fire in California. Spectroscopic results suggested that the aromaticity of WEOM followed white ash > control > black ash and fluorescence region II (excitation 220-250 nm; emission 330-380 nm) of the emission-excitation-matrix was identified as a potential burn severity indicator. Compared to the control, WEOM from white and black ashes had lower reactivity in forming trihalomethanes (55%-of-control) and haloacetic acids (67%-of-control), but higher reactivity in forming the more carcinogenic haloacetonitrile after chlorination (244%-of-control) and N-nitrosodimethylamine after chloramination (229%-of-control). There was no change in reactivity for chloral hydrate formation, while WEOM from black ash showed a higher reactivity for haloketone formation (150%-of-control). Because wildfire consumed a large portion of organic matter from the detritus layer, there was lower water extractable organic carbon (27%-of-control) and organic nitrogen (19%-of-control) yields in ashes. Consequently, the wildfire caused an overall reduction in water extractable terrestrial DBP precursor yield from detritus materials.


Assuntos
Desinfecção , Incêndios , Florestas , Bromo/análise , California , Carbono/análise , Dimetilnitrosamina/análise , Fluorescência , Halogenação , Nitrogênio/análise , Trialometanos/análise , Qualidade da Água
14.
Environ Sci Technol ; 48(15): 8653-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24968236

RESUMO

Chloramination of drinking waters has been associated with N-nitrosodimethylamine (NDMA) formation as a disinfection byproduct. NDMA is classified as a probable carcinogen and thus its formation during chloramination has recently become the focus of considerable research interest. In this study, the formation mechanisms of NDMA from ranitidine and trimethylamine (TMA), as models of tertiary amines, during chloramination were investigated by using density functional theory (DFT). A new four-step formation pathway of NDMA was proposed involving nucleophilic substitution by chloramine, oxidation, and dehydration followed by nitrosation. The results suggested that nitrosation reaction is the rate-limiting step and determines the NDMA yield for tertiary amines. When 45 other tertiary amines were examined, the proposed mechanism was found to be more applicable to aromatic tertiary amines, and there may be still some additional factors or pathways that need to be considered for aliphatic tertiary amines. The heterolytic ONN(Me)2-R(+) bond dissociation energy to release NDMA and carbocation R(+) was found to be a criterion for evaluating the reactivity of aromatic tertiary amines. A structure-activity study indicates that tertiary amines with benzyl, aromatic heterocyclic ring, and diene-substituted methenyl adjacent to the DMA moiety are potentially significant NDMA precursors. The findings of this study are helpful for understanding NDMA formation mechanism and predicting NDMA yield of a precursor.


Assuntos
Dimetilnitrosamina/síntese química , Desinfecção , Água Potável/química , Metilaminas/química , Ranitidina/química , Aminas/química , Cloraminas , Preparações Farmacêuticas/química
15.
Waste Manag Res ; 32(8): 763-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25069454

RESUMO

Hazardous waste (HW) generation information is an absolute necessity for ensuring the proper planning, implementation, and monitoring of any waste management system. Unfortunately, environmental agencies in developing countries face difficulties in gathering data directly from the creators of such wastes. It is possible, however, to construct theoretical HW inventories using the waste generation factors (WGFs). The objective of this study was to develop a complete nationwide HW inventory of Turkey that relies on nation-specific WGFs to support management activities of the Turkish Ministry of Environment and Urbanization (MoEU). Inventory studies relied on WGFs from: (a) the literature and (b) field studies and analysis of waste declarations reflecting country-specific industrial practices. Moreover, new tools were introduced to the monitoring infrastructure of MoEU to obtain a comprehensive waste generation data set. Through field studies and a consideration of country specific conditions, it was possible to more thoroughly elucidate HW generation trends in Turkey, a method that was deemed superior to other alternatives. Declaration and literature based WGFs also proved most helpful in supplementing field observations that could not always be conducted. It was determined that these theoretical inventories could become valuable assets in supporting regulating agencies in developing countries for a more thorough implementation of HW management systems.


Assuntos
Países em Desenvolvimento , Resíduos Perigosos/análise , Modelos Teóricos , Gerenciamento de Resíduos/métodos , Turquia
16.
Chemosphere ; 356: 141958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608775

RESUMO

In water treatment processes (WTPs), artificial intelligence (AI) based techniques, particularly machine learning (ML) models have been increasingly applied in decision-making activities, process control and optimization, and cost management. At least 91 peer-reviewed articles published since 1997 reported the application of AI techniques to coagulation/flocculation (41), membrane filtration (21), disinfection byproducts (DBPs) formation (13), adsorption (16) and other operational management in WTPs. In this paper, these publications were reviewed with the goal of assessing the development and applications of AI techniques in WTPs and determining their limitations and areas for improvement. The applications of the AI techniques have improved the predictive capabilities of coagulant dosages, membrane flux, rejection and fouling, disinfection byproducts (DBPs) formation and pollutants' removal for the WTPs. The deep learning (DL) technology showed excellent extraction capabilities for features and data mining ability, which can develop an image recognition-based DL framework to establish the relationship among the shapes of flocs and dosages of coagulant. Further, the hybrid techniques (e.g., combination of regression and AI; physical/kinetics and AI) have shown better predictive performances. The future research directions to achieve better control for WTPs through improving these techniques were also emphasized.


Assuntos
Inteligência Artificial , Água Potável , Floculação , Purificação da Água , Purificação da Água/métodos , Água Potável/química , Desinfecção/métodos , Filtração/métodos , Poluentes Químicos da Água/análise , Aprendizado de Máquina , Adsorção
17.
Environ Pollut ; 341: 122976, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984473

RESUMO

The ubiquitous occurrence of microplastics in water and wastewater is a growing concern. In this study, the chemical transformation and organic release of virgin and UV-aged thermoplastic polyurethane (TPU) polymers during chlorination were investigated. As compared to virgin TPU polymer, the UV-aged TPU polymer exhibited high chlorine reactivity with noticeable destruction on its surface functional groups after chlorination, which could be ascribed to the UV-induced activation of hard segment of TPU backbone and increased contact area. The concentrations of leached organics increased by 1.6-fold with obviously high abundances of low-molecular-weight components. Additives, monomers, compounds relating to TPU chain extension, and their chlorination byproducts contributed to the increased organic release. Meanwhile, the formation of chloroform, haloacetic acids, trichloroacetaldehyde, and dichloroacetonitrile increased by 3.8-, 1.7-, 4.9-, and 2.4-fold, respectively. Two additives and six chlorination byproducts in leachate from chlorinated UV-aged TPU were predicted as highly toxic, e.g., butyl octyl phthalate, palmitic acid, 2,6-di-tert-butyl-1,4-benzoquinone, and chlorinated aniline. Evaluated by human hepatocarcinoma cells, the 50% lethal concentration factor of organics released from chlorinated UV-aged TPU was approximately 10% of that from its virgin counterpart, indicating a substantially increased level of cytotoxicity. This study highlights that the release of additives and chlorination byproducts from the chemical transformation of UV-aged microplastics during chlorination may be of potentially toxic concern.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Humanos , Idoso , Desinfecção , Microplásticos , Plásticos , Poliuretanos , Halogenação , Poluentes Químicos da Água/análise , Cloro/química
18.
Chemosphere ; 363: 142876, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025309

RESUMO

Developing predictive models for iodo-trihalomethane (I-THM) formation in water is needed and valuable to minimize extensive and costly analysis. The main objective of this study was to develop a statistical model for the formation of six types of I-THMs under uniform formation conditions. Prediction of I-THM formation in two different water sources (natural organic matter [NOM] and algal organic matter [AOM]) were comprehensively evaluated during both preformed chloramination and prechlorination followed by ammonia addition conditions. In addition, the prediction of THM10 (sum of six I-THM and THM4) formation was conducted during both oxidation strategies for NOM waters. In total, 460 experimental results were compiled from the literature and our own database. The results showed the coefficient of determination (R2) values for the six I-THM species ranged between 0.53-0.68 and 0.35-0.79 in the preformed NH2Cl and perchlorinated NOM waters, respectively. Among all independent variables, the I- exhibited the most significant influence on the formation of all I-THM species in the preformed NH2Cl, while SUVA254 was the most influential parameter for perchlorinated NOM water. When the preformed chloramination was compared with prechlorination followed by ammonia addition, the R2 value for I-THMs (0.93) was higher than for THM4 formation (0.79) in preformed chloramination. In the prechlorination followed by ammonia addition condition, the model prediction of I-THMs (R2= 0.45) formation was lower than THM4 (R2= 0.96). Overall, the pH, I-, SUVA254, and oxidant type are all played crucial roles in determining the I-THM formation, impacting the overall effectiveness and predictability of the models.


Assuntos
Amônia , Halogenação , Trialometanos , Poluentes Químicos da Água , Purificação da Água , Trialometanos/química , Trialometanos/análise , Amônia/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Modelos Estatísticos , Cloraminas/química , Oxirredução
19.
Chemosphere ; 349: 140985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104740

RESUMO

Amino acids are the main components of dissolved organic nitrogen in algal- and wastewater-impacted waters, which can react with chlorine to form toxic halogenated disinfection by-products (DBPs) in the disinfection process. In the presence of bromide, the reaction between amino acids and secondarily formed hypobromous acid can lead to the formation of brominated DBPs that are more toxic than chlorinated analogues. This study compares the formation of regulated and unregulated DBPs during chlorination and bromination of representative amino acids (AAs) (e.g., aspartic acid, asparagine, tryptophan, tyrosine, and histidine). In general, concentrations of brominated DBPs (trihalomethanes, haloacetonitriles, and haloacetamides, 24.9-5835.0 nM) during bromination were higher than their chlorinated analogues (9.3-3235.3 nM) during chlorination. This indicates the greater efficacy of bromine as a halogenating agent. However, the formation of chlorinated haloacetic acids during chlorination was higher than the corresponding brominated DBPs from bromination. It is likely that an oxidation pathway is required for the formation of haloacetic acids and chlorine is a stronger oxidant than bromine. Moreover, chlorine forms higher levels of haloacetaldehydes (74.4-1077.8 nM) from amino acids than bromine (1.0-480.2 nM) owing to the instability of brominated species. The DBP formation yields depend on the types of functional groups in the side chain of AAs. Eight intermediates resulting from chlorination/bromination of tyrosine were identified by triple quadrupole mass spectrometer, including N-chlorinated/brominated tyrosine, 3-chloro/bromo-tyrosine, and 3,5-dichloro/dibromo-tyrosine. These findings provided new insights into the DBP formation during the chlorination of algal- and wastewater-impacted waters with elevated bromide.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Halogenação , Desinfetantes/química , Bromo , Brometos/química , Cloro/química , Aminoácidos , Águas Residuárias , Tirosina , Poluentes Químicos da Água/análise , Purificação da Água/métodos
20.
Sci Total Environ ; 952: 175909, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233070

RESUMO

The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 µm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.) for 12 days. The study aimed to assess the impact of these contaminants on the morphological, physiological, and biochemical parameters of the rice plants. The findings revealed that rice seedlings were not sensitive to PA alone. However, SMX alone or in combination with PA, significantly inhibited shoot and root growth, total biomass, and affected photosynthetic pigments. Higher concentrations of SMX increased antioxidant enzyme activity, indicating oxidative stress. The roots had a higher SMX content than the shoots, and the concentration of minerals such as iron, copper, and magnesium were reduced in roots treated with SMX. RNA-seq analysis showed changes in the expression of genes related to stress, metabolism, and transport in response to the micropollutants. Overall, this study provides valuable insights on the combined impacts of MPs and AMs on food crops, the environment, and human health in future risk assessments and management strategies in using reclaimed water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA