Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(13): e202300391, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400930

RESUMO

The front cover artwork is provided by Professor Jean-Sabin McEwen at Washington State University. The image shows how ion exchanges prepared with different copper precursors influence how the copper ultimately sites relative to the zeolite framework, which ultimately impacts its catalytic reactivity for the selective catalytic reduction (SCR) of NOx in Cu-SSZ-13. Read the full text of the Research Article at 10.1002/cphc.202300271.

2.
Chemphyschem ; 24(13): e202300271, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074735

RESUMO

The influence of the copper ion exchange protocol on SCR activity of SSZ-13 is quantified. Using the same parent SSZ-13 zeolite, four exchange protocols are used to assess how exchange protocol impacts metal uptake and SCR activity. Large differences in the SCR activity, nearly 30 percentage points at 160 °C at constant copper content, are observed for different exchange protocols implying that different exchange protocols lead to different copper species. Hydrogen temperature programmed reduction on selected samples and infrared spectroscopy of CO binding corroborates this conclusion as the reactivity at 160 °C correlates with the intensity of the IR band at 2162 cm-1 . DFT-based calculations show that such an IR assignment is consistent with CO adsorbed on a Cu(I) cation within an eight-membered ring. This work shows that SCR activity can be influenced by the ion exchange process even when different protocols lead to the same metal loading. Perhaps most interesting, a protocol used to generate Cu-MOR for methane to methanol studies led to the most active catalyst both on a unit mass or unit mole copper basis. This points to a yet not recognized means to tailor catalyst activity as the open literature is silent on this issue.

3.
Angew Chem Int Ed Engl ; 62(44): e202308002, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37488071

RESUMO

Understanding the dynamic structural evolution of supported metal clusters under reaction conditions is crucial to develop structure reactivity relations. Here, we followed the structure of different size Rh clusters supported on Al2 O3 using in situ/operando spectroscopy and ex situ aberration-corrected electron microscopy. We report a dynamic evolution of rhodium clusters into thermally stable isolated single atoms upon exposure to oxygen and during CO oxidation. Rh clusters partially disperse into single atoms at room temperature and the extent of dispersion increases as the Rh size decreases and as the reaction temperature increases. A strong correlation is found between the extent of dispersion and the CO oxidation kinetics. More importantly, dispersing Rh clusters into single atoms increases the activity at room temperature by more than two orders of magnitude due to the much lower activation energy on single atoms (40 vs. 130 kJ/mol). This work demonstrates that the structure and reactivity of small Rh clusters are very sensitive to the reaction environment.

4.
Inorg Chem ; 61(22): 8585-8591, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35613459

RESUMO

Metal-organic frameworks (MOFs) have shown great success in aqueous-phase hydrolysis of nerve agents, with some even showing promise in the gas phase. However, both aqueous-phase reactivity and gas-phase reactivity are hindered because of the binding of the hydrolyzed products to the MOF nodes in a stable, bridging configuration, which limits turnover. Single transition-metal atoms in MOFs have been a growing field of interest for catalytic applications, and single atoms have been proposed to prevent the unwanted bridged conformation and increase catalytic turnover. To date, there has been little experimental evidence to support the hypothesis. Herein, we report two copper single atom-modified UiO-66 MOFs for nerve-agent simulant degradation. Despite the capping of highly active Zr4+ nodes with fewer Lewis acidic Cun+ atoms, the reactivity of both CuMOFs approaches that of native UiO-66 under aqueous conditions. Computational studies reveal that the Cu coordination environment impairs product inhibition with respect to the native MOF.


Assuntos
Estruturas Metalorgânicas , Agentes Neurotóxicos , Compostos Organometálicos , Cobre , Estruturas Metalorgânicas/química , Agentes Neurotóxicos/química , Ácidos Ftálicos
5.
J Am Chem Soc ; 143(14): 5445-5464, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33818086

RESUMO

The direct synthesis of hydrogen peroxide (H2 + O2 → H2O2) may enable low-cost H2O2 production and reduce environmental impacts of chemical oxidations. Here, we synthesize a series of Pd1Aux nanoparticles (where 0 ≤ x ≤ 220, ∼10 nm) and show that, in pure water solvent, H2O2 selectivity increases with the Au to Pd ratio and approaches 100% for Pd1Au220. Analysis of in situ XAS and ex situ FTIR of adsorbed 12CO and 13CO show that materials with Au to Pd ratios of ∼40 and greater expose only monomeric Pd species during catalysis and that the average distance between Pd monomers increases with further dilution. Ab initio quantum chemical simulations and experimental rate measurements indicate that both H2O2 and H2O form by reduction of a common OOH* intermediate by proton-electron transfer steps mediated by water molecules over Pd and Pd1Aux nanoparticles. Measured apparent activation enthalpies and calculated activation barriers for H2O2 and H2O formation both increase as Pd is diluted by Au, even beyond the complete loss of Pd-Pd coordination. These effects impact H2O formation more significantly, indicating preferential destabilization of transition states that cleave O-O bonds reflected by increasing H2O2 selectivities (19% on Pd; 95% on PdAu220) but with only a 3-fold reduction in H2O2 formation rates. The data imply that the transition states for H2O2 and H2O formation pathways differ in their coordination to the metal surface, and such differences in site requirements require that we consider second coordination shells during the design of bimetallic catalysts.

6.
Langmuir ; 32(6): 1468-77, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26741639

RESUMO

Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale, such as catalytic activity. In this work, we synthesize Pd nanoparticles with well-controlled size in the sub-3 nm range using scanning transmission electron microscopy (STEM) in combination with an in situ liquid stage. We use an aromatic hydrocarbon (toluene) as a solvent that is very resistant to high-energy electron irradiation, which creates a net reducing environment without the need for additives to scavenge oxidizing radicals. The primary reducing species is molecular hydrogen, which is a widely used reductant in the synthesis of supported metal catalysts. We propose a mechanism of particle formation based on the effect of tri-n-octylphosphine (TOP) on size stabilization, relatively low production of radicals, and autocatalytic reduction of Pd(II) compounds. We combine in situ STEM results with insights from in situ small-angle X-ray scattering (SAXS) from alcohol-based synthesis, having similar reduction potential, in a customized microfluidic device as well as ex situ bulk experiments. This has allowed us to develop a fundamental growth model for the synthesis of size-stabilized Pd nanoparticles and demonstrate the utility of correlating different in situ and ex situ characterization techniques to understand, and ultimately control, metal nanostructure synthesis.

7.
Chem Soc Rev ; 43(22): 7594-623, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24801125

RESUMO

Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.


Assuntos
Biomassa , Lignina/química , Biocombustíveis , Catálise , Lignina/metabolismo , Óxidos/química , Porosidade
8.
Nanoscale ; 13(1): 206-217, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33325939

RESUMO

Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal-ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal-ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles.

9.
Science ; 371(6529): 626-632, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542136

RESUMO

Solvent molecules influence the reactions of molecular hydrogen and oxygen on palladium nanoparticles. Organic solvents activate to form reactive surface intermediates that mediate oxygen reduction through pathways distinct from reactions in pure water. Kinetic measurements and ab initio quantum chemical calculations indicate that methanol and water cocatalyze oxygen reduction by facilitating proton-electron transfer reactions. Methanol generates hydroxymethyl intermediates on palladium surfaces that efficiently transfer protons and electrons to oxygen to form hydrogen peroxide and formaldehyde. Formaldehyde subsequently oxidizes hydrogen to regenerate hydroxymethyl. Water, on the other hand, heterolytically oxidizes hydrogen to produce hydronium ions and electrons that reduce oxygen. These findings suggest that reactions of solvent molecules at solid-liquid interfaces can generate redox mediators in situ and provide opportunities to substantially increase rates and selectivities for catalytic reactions.

10.
J Am Chem Soc ; 131(34): 12230-9, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19663478

RESUMO

While ammonia synthesis and decomposition on Ru are known to be structure-sensitive reactions, the effect of particle shape on controlling the particle size giving maximum turnover frequency (TOF) is not understood. By controlling the catalyst pretreatment conditions, we have varied the particle size and shape of supported Ru/gamma-Al(2)O(3) catalysts. The Ru particle shape was reconstructed by combining microscopy, chemisorption, and extended X-ray absorption fine structure (EXAFS) techniques. We show that the particle shape can change from a round one, for smaller particles, to an elongated, flat one, for larger particles, with suitable pretreatment. Density functional theory calculations suggest that the calcination most likely leads to planar structures. We show for the first time that the number of active (here B(5)) sites is highly dependent on particle shape and increases with particle size up to 7 nm for flat nanoparticles. The maximum TOF (based on total exposed Ru atoms) and number of active (B(5)) sites occur at approximately 7 nm for elongated nanoparticles compared to at approximately 1.8-3 nm for hemispherical nanoparticles. A complete, first-principles based microkinetic model is constructed that can quantitatively describe for the first time the effect of varying particle size and shape on Ru activity and provide further support of the characterization results. In very small nanoparticles, particle size polydispersity (due to the presence of larger particles) appears to be responsible for the observed activity.

11.
Nanoscale Adv ; 1(10): 4052-4066, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132098

RESUMO

Controlling the size distribution of nanoparticles is important for many applications and typically involves the use of ligands during synthesis. In this study, we show that the mechanism of size focusing involves a dependence of the growth rate on the size of the nanoparticles and the ligand coverage on the surface of the nanoparticles. To demonstrate these effects, we used in situ small angle X-ray scattering (SAXS) and population balance kinetic modeling (PBM) to investigate the evolution of size distribution during the synthesis of colloidal Pd metal nanoparticles. Despite temporal overlap of nucleation and growth, our in situ SAXS show size focusing of the distribution under different synthetic conditions (different concentrations of metal and ligand as well as solvent type). To understand the mechanism of size focusing using PBM, we systematically studied how the evolution of the nanoparticle size distribution is affected by nucleation rate, and dependence of the growth rate constant on ligand surface coverage, and size of the nanoparticles. We show that continuous nucleation contributes to size defocusing. However, continuous nucleation results in different reaction times for the nanoparticle population leading to time and size-dependent ligand surface coverage. Using density functional theory (DFT) calculations and Brønsted-Evans-Polanyi relations, we show that as the population grows, larger nanoparticles grow more slowly than smaller ones due to lower intrinsic activity and higher ligand coverage on the surface. Therefore, despite continuous nucleation, the faster growth of smaller nanoparticles in the population leads to size focusing. The size focusing behaviour (due to faster growth of smaller nanoparticles) was found to be model independent and similar results were demonstrated under different nucleation and growth pathways (e.g. growth via ion reduction on the surface and/or monomer addition). Our results provide a microscopic connection between kinetics and thermodynamics of nanoparticle growth and metal-ligand binding, and their effect on the size distribution of colloidal nanoparticles.

12.
J Vis Exp ; (136)2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29985367

RESUMO

The size, size distribution and stability of colloidal nanoparticles are greatly affected by the presence of capping ligands. Despite the key contribution of capping ligands during the synthesis reaction, their role in regulating the nucleation and growth rates of colloidal nanoparticles is not well understood. In this work, we demonstrate a mechanistic investigation of the role of trioctylphosphine (TOP) in Pd nanoparticles in different solvents (toluene and pyridine) using in situ SAXS and ligand-based kinetic modeling. Our results under different synthetic conditions reveal the overlap of nucleation and growth of Pd nanoparticles during the reaction, which contradicts the LaMer-type nucleation and growth model. The model accounts for the kinetics of Pd-TOP binding for both, the precursor and the particle surface, which is essential to capture the size evolution as well as the concentration of particles in situ. In addition, we illustrate the predictive power of our ligand-based model through designing the synthetic conditions to obtain nanoparticles with desired sizes. The proposed methodology can be applied to other synthesis systems and therefore serves as an effective strategy for predictive synthesis of colloidal nanoparticles.


Assuntos
Nanopartículas Metálicas/química , Paládio/química , Difração de Raios X/métodos
13.
Nanoscale ; 9(36): 13772-13785, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28885633

RESUMO

Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio)1/3, despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.

14.
Chem Commun (Camb) ; 51(93): 16617-20, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26462032

RESUMO

We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.


Assuntos
Decanoatos/química , Guaiacol/química , Hidrocarbonetos/síntese química , Metanol/química , Oxigênio/química , Vapor , Catálise , Hidrocarbonetos/química , Estrutura Molecular , Pinus/química
15.
ChemSusChem ; 4(11): 1679-84, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21919212

RESUMO

The effect of zinc promotion on the oxidation state of cobalt in Co/ZrO(2) catalysts was investigated and correlated with the activity and selectivity for ethanol steam reforming (ESR). Catalysts were synthesized by applying incipient wetness impregnation and characterized by using Brunauer-Emmett-Teller (BET), temperature-programmed reduction (TPR) measurements, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Higher ethanol conversion and lower CH(4) selectivity are observed for the Co/ZrO(2) catalyst promoted with Zn as compared to the Co/ZrO(2) catalyst alone. Addition of Zn inhibits the oxidation of metallic cobalt (Co(0) ) particles and results in a higher ratio of Co(0) /Co(2+) in the Zn-promoted Co/ZrO(2) catalyst. These results suggest that metallic cobalt (Co(0) ) is more active than Co(2+) in the ethanol conversion through dehydrogenation and that Co(2+) may play a role in the CH(4) formation. TPR measurements, on the other hand, reveal that Zn addition inhibits the reduction of Co(2+) and Co(3+) , which would lead to the false conclusion that oxidized Co is required to reduce the CH(4) formation. Therefore, TPR measurements may not be appropriate to correlate the degree of metal reducibility (in this case Co(0)) with the catalyst activity for reactions, such as ESR, where oxidizing conditions exist.


Assuntos
Cobalto/química , Zinco/química , Zircônio/química , Catálise , Etanol/química , Oxirredução , Espectroscopia Fotoeletrônica , Temperatura , Difração de Raios X
16.
Phys Chem Chem Phys ; 10(36): 5584-90, 2008 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-18956093

RESUMO

The selectivity towards CO2 during steam reforming of methanol on Pd increases in the order Al2O3 < ZrO2 < ZnO. However, conventional catalyst preparation can damage the ZnO surface, even causing complete dissolution. The faceted, prismatic ZnO crystals in the support (Aldrich) get easily destroyed during catalyst preparation. We show in this work that, by using organic precursors, the faceted ZnO particles can be preserved. The role of ZnO morphology on reactivity for methanol steam reforming (MSR) is explored. Since the MSR reactivity and selectivity is also a function of the particle size of the nanoparticles as well as the presence of the PdZn ordered alloy phase, we have controlled for both these parameters to derive the true influence of the support. We find that the catalyst prepared from an organic precursor is more active than one prepared from acidic precursors, despite having similar particle size and extent of bulk PdZn ordered alloy formation. The results suggest that preserving certain ZnO surfaces is beneficial, and the ZnO support may play an important role in the overall reaction of methanol steam reforming.


Assuntos
Metanol/química , Paládio/química , Vapor , Água/química , Óxido de Zinco/química , Catálise , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Difração de Pó , Propriedades de Superfície , Temperatura , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA