Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 221(1): 156-161, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301137

RESUMO

Monoclonal antibodies can mediate protection against Ebola virus (EBOV) infection through direct neutralization as well as through the recruitment of innate immune effector functions. However, the antibody functional response following survival of acute EBOV disease has not been well characterized. In this study, serum antibodies from Ebola virus disease (EVD) survivors from Sierra Leone were profiled to capture variation in overall subclass/isotype abundance, neutralizing activity, and innate immune effector functions. Antibodies from EVD survivors exhibited robust innate immune effector functions, mediated primarily by IgG1 and IgA1. In conclusion, development of functional antibodies follows survival of acute EVD.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Doença pelo Vírus Ebola/imunologia , Imunidade Inata , Imunoglobulina G/sangue , Antígenos Virais/imunologia , Humanos , Imunoglobulina A/sangue , Fagocitose , Serra Leoa , Sobreviventes
2.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518655

RESUMO

Ebolaviruses Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) cause human disease with high case fatality rates. Experimental monovalent vaccines, which all utilize the sole envelope glycoprotein (GP), do not protect against heterologous ebolaviruses. Human parainfluenza virus type 3-vectored vaccines offer benefits, including needle-free administration and induction of mucosal responses in the respiratory tract. Multiple approaches were taken to induce broad protection against the three ebolaviruses. While GP consensus-based antigens failed to elicit neutralizing antibodies, polyvalent vaccine immunization induced neutralizing responses to all three ebolaviruses and protected animals from death and disease caused by EBOV, SUDV, and BDBV. As immunization with a cocktail of antigenically related antigens can skew the responses and change the epitope hierarchy, we performed comparative analysis of antibody repertoire and Fc-mediated protective mechanisms in animals immunized with monovalent versus polyvalent vaccines. Compared to sera from guinea pigs receiving the monovalent vaccines, sera from guinea pigs receiving the trivalent vaccine bound and neutralized EBOV and SUDV at equivalent levels and BDBV at only a slightly reduced level. Peptide microarrays revealed a preponderance of binding to amino acids 389 to 403, 397 to 415, and 477 to 493, representing three linear epitopes in the mucin-like domain known to induce a protective antibody response. Competition binding assays with monoclonal antibodies isolated from human ebolavirus infection survivors demonstrated that the immune sera block the binding of antibodies specific for the GP glycan cap, the GP1-GP2 interface, the mucin-like domain, and the membrane-proximal external region. Thus, administration of a cocktail of three ebolavirus vaccines induces a desirable broad antibody response, without skewing of the response toward preferential recognition of a single virus.IMPORTANCE The symptoms of the disease caused by the ebolaviruses Ebola, Bundibugyo, and Sudan are similar, and their areas of endemicity overlap. However, because of the limited antigenic relatedness of the ebolavirus glycoprotein (GP) used in all candidate vaccines against these viruses, they protect only against homologous and not against heterologous ebolaviruses. Therefore, a broadly specific pan-ebolavirus vaccine is required, and this might be achieved by administration of a cocktail of vaccines. The effects of cocktail administration of ebolavirus vaccines on the antibody repertoire remain unknown. Here, an in-depth analysis of the antibody responses to administration of a cocktail of human parainfluenza virus type 3-vectored vaccines against individual ebolaviruses was performed, which included analysis of binding to GP, neutralization of individual ebolaviruses, epitope specificity, Fc-mediated functions, and protection against the three ebolaviruses. The results demonstrated potent and balanced responses against individual ebolaviruses and no significant reduction of the responses compared to that induced by individual vaccines.


Assuntos
Vacinas contra Ebola/genética , Ebolavirus/genética , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Combinação de Medicamentos , Epitopos/imunologia , Feminino , Furões , Vetores Genéticos , Glicoproteínas/imunologia , Cobaias , Doença pelo Vírus Ebola/virologia , Vírus da Parainfluenza 3 Humana/genética , Vacinas Virais/genética
3.
J Virol ; 90(1): 266-78, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468533

RESUMO

UNLABELLED: The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. IMPORTANCE: Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Filoviridae/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunização Passiva , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/administração & dosagem , Proteção Cruzada , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Camundongos Endogâmicos BALB C , Resultado do Tratamento
4.
Cell Host Microbe ; 27(6): 976-991.e11, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32320678

RESUMO

Marburg virus (MARV) and Ebola virus (EBOV) belong to the family Filoviridae. MARV causes severe disease in humans with high fatality. We previously isolated a large panel of monoclonal antibodies (mAbs) from B cells of a human survivor with previous naturally acquired MARV infection. Here, we characterized functional properties of these mAbs and identified non-neutralizing mAbs targeting the glycoprotein (GP) 2 portion of the mucin-like domain (MLD) of MARV GP, termed the wing region. One mAb targeting the GP2 wing, MR228, showed therapeutic protection in mice and guinea pigs infected with MARV. The protection was mediated by the Fc fragment functions of MR228. Binding of another GP2 wing-specific non-neutralizing mAb, MR235, to MARV GP increased accessibility of epitopes in the receptor-binding site (RBS) for neutralizing mAbs, resulting in enhanced virus neutralization by these mAbs. These findings highlight an important role for non-neutralizing mAbs during natural human MARV infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linfócitos B , Chlorocebus aethiops , Modelos Animais de Doenças , Ebolavirus/imunologia , Epitopos/imunologia , Feminino , Glicoproteínas/imunologia , Cobaias , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sobreviventes , Células THP-1 , Células Vero , Proteínas do Envelope Viral/imunologia
5.
Cell Host Microbe ; 24(2): 221-233.e5, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30092199

RESUMO

The recent Ebola virus (EBOV) epidemic highlighted the need for effective vaccines and therapeutics to limit and prevent outbreaks. Host antibodies against EBOV are critical for controlling disease, and recombinant monoclonal antibodies (mAbs) can protect from infection. However, antibodies mediate an array of antiviral functions including neutralization as well as engagement of Fc-domain receptors on immune cells, resulting in phagocytosis or NK cell-mediated killing of infected cells. Thus, to understand the antibody features mediating EBOV protection, we examined specific Fc features associated with protection using a library of EBOV-specific mAbs. Neutralization was strongly associated with therapeutic protection against EBOV. However, several neutralizing mAbs failed to protect, while several non-neutralizing or weakly neutralizing mAbs could protect. Antibody-mediated effector functions, including phagocytosis and NK cell activation, were associated with protection, particularly for antibodies with moderate neutralizing activity. This framework identifies functional correlates that can inform therapeutic and vaccine design strategies against EBOV and other pathogens.


Assuntos
Anticorpos Monoclonais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Fragmentos Fc das Imunoglobulinas/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Células RAW 264.7
6.
Mucosal Immunol ; 9(6): 1549-1558, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26960182

RESUMO

Transmission of HIV across mucosal barriers accounts for the majority of HIV infections worldwide. Thus, efforts aimed at enhancing protective immunity at these sites are a top priority, including increasing virus-specific antibodies (Abs) and antiviral activity at mucosal sites. Mucin proteins, including the largest cell-associated mucin, mucin 16 (MUC16), help form mucus to provide a physical barrier to incoming pathogens. Here, we describe a natural interaction between Abs and MUC16 that is enhanced in specific disease settings such as chronic HIV infection. Binding to MUC16 was independent of IgG subclass, but strongly associated with shorter Ab glycan profiles, with agalactosylated (G0) Abs demonstrating the highest binding to MUC16. Binding of Abs to epithelial cells was diminished following MUC16 knockdown, and the MUC16 N-linked glycans were critical for binding. Further, agalactosylated VRC01 captured HIV more efficiently in MUC16. These data point to a novel opportunity to enrich Abs at mucosal sites by targeting Abs to MUC16 through changes in Fc glycosylation, potentially blocking viral movement and sequestering the virus far from the epithelial border. Thus, next-generation vaccines or monoclonal therapeutics may enhance protective immunity by tuning Ab glycosylation to promote the enrichment of Abs at mucosal barriers.


Assuntos
Antígeno Ca-125/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Proteínas de Membrana/imunologia , Afinidade de Anticorpos/imunologia , Antígeno Ca-125/metabolismo , Feminino , Glicosilação , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Proteínas de Membrana/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/virologia , Muco/metabolismo , Ligação Proteica , Vagina
7.
Dalton Trans ; 42(34): 12354-63, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23856816

RESUMO

Six new Ir(III) complexes containing the 3'-phosphino-2,2':5',2''-terthiophene (PT3) ligand in three different coordination modes are reported. The electronic properties of the complexes are characterized by cyclic voltammetry, absorption, emission and time-resolved transient absorption spectroscopies and DFT/TDDFT calculations. The electrochemical and photophysical behaviour of the complexes was found to be dominated by the PT3 ligand. For the complexes in which the PT3 ligand is coordinated in a bidentate P,S or P,C mode, the lowest energy absorption band is attributed to π-π* PT3 localized transitions consistent with observations from DFT calculations. Emission quantum yields are low in all cases (<0.07) and emission lifetimes are short (<50 ns). Intersystem crossing leads to a long-lived triplet state ((3)L) also localized on the PT3 group. In the complex where the PT3 ligand is coordinated only via the phosphine, TDDFT calculations suggest that there is some MLCT (and Cl-PT3 CT) character in the lowest energy transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA