Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(6): 2380-2385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33459346

RESUMO

Magnetoelastic (ME) sensors, which can be remotely activated via magnetic fields, are an excellent choice for wireless monitoring of biological parameters due to their ability to be scaled into different sizes and have their surface functionalized for chemical or biological sensing. In this study, we present the application of a commercially available ME material (Metglas 2826 MB) to develop a sensor system that can monitor the attachment of anchorage-dependent mammalian cells in two-dimensional in vitro cell cultures. Results obtained with the developed sensors and detection system correlated with microscopic image analysis of cell quantification, which showed a linear relationship between the sensor response and attached fibroblast cells on the sensor surface. It was also revealed that the developed ME sensor system is capable of providing temporal profiles of cell growth corresponding to different stages of cell attachment and proliferation in real-time.


Assuntos
Técnicas de Cultura de Células , Proliferação de Células , Magnetismo , Animais , Adesão Celular , Linhagem Celular , Desenho de Equipamento , Fibroblastos/citologia , Camundongos
2.
Bone ; 135: 115311, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32156664

RESUMO

Mechanical loads exerted on the skeleton during activities such as walking are important regulators of bone repair, but dynamic biomechanical signals are difficult to measure inside the body. The inability to measure the mechanical environment in injured tissues is a significant barrier to developing integrative regenerative and rehabilitative strategies that can accelerate recovery from fracture, segmental bone loss, and spinal fusion. Here we engineered an implantable strain sensor platform and longitudinally measured strain across a bone defect in real-time throughout rehabilitation. The results showed that load-sharing permitted by a load-sharing fixator initially delivered a two-fold increase in deformation magnitude, subsequently increased mineralized bridging by nearly three-fold, and increased bone formation by over 60%. These data implicate a critical role for early mechanical cues on the long term healing response as strain cycle magnitude at 1 week (before appreciable healing occurred) had a significant positive correlation with the long-term bone regeneration outcomes. Furthermore, we found that sensor readings correlated with the status of healing, suggesting a role for strain sensing as an X-ray-free healing assessment platform. Therefore, non-invasive strain measurements may possess diagnostic potential to evaluate bone repair and reduce clinical reliance on current radiation-emitting imaging methods. Together, this study demonstrates a promising framework to quantitatively develop and exploit mechanical rehabilitation strategies that enhance bone repair.


Assuntos
Fraturas Ósseas , Regeneração Óssea , Consolidação da Fratura , Humanos , Próteses e Implantes , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA