Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EJNMMI Rep ; 8(1): 2, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38748286

RESUMO

BACKGROUND: This PET/MRI study compared contrast-enhanced MRI, 18F-FACBC-, and 18F-FDG-PET in the detection of primary central nervous system lymphomas (PCNSL) in patients before and after high-dose methotrexate chemotherapy. Three immunocompetent PCNSL patients with diffuse large B-cell lymphoma received dynamic 18F-FACBC- and 18F-FDG-PET/MRI at baseline and response assessment. Lesion detection was defined by clinical evaluation of contrast enhanced T1 MRI (ce-MRI) and visual PET tracer uptake. SUVs and tumor-to-background ratios (TBRs) (for 18F-FACBC and 18F-FDG) and time-activity curves (for 18F-FACBC) were assessed. RESULTS: At baseline, seven ce-MRI detected lesions were also detected with 18F-FACBC with high SUVs and TBRs (SUVmax:mean, 4.73, TBRmax: mean, 9.32, SUVpeak: mean, 3.21, TBRpeak:mean: 6.30). High TBR values of 18F-FACBC detected lesions were attributed to low SUVbackground. Baseline 18F-FDG detected six lesions with high SUVs (SUVmax: mean, 13.88). In response scans, two lesions were detected with ce-MRI, while only one was detected with 18F-FACBC. The lesion not detected with 18F-FACBC was a small atypical MRI detected lesion, which may indicate no residual disease, as this patient was still in complete remission 12 months after initial diagnosis. No lesions were detected with 18F-FDG in the response scans. CONCLUSIONS: 18F-FACBC provided high tumor contrast, outperforming 18F-FDG in lesion detection at both baseline and in response assessment. 18F-FACBC may be a useful supplement to ce-MRI in PCNSL detection and response assessment, but further studies are required to validate these findings. Trial registration ClinicalTrials.gov. Registered 15th of June 2017 (Identifier: NCT03188354, https://clinicaltrials.gov/study/NCT03188354 ).

2.
Cancers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061219

RESUMO

BACKGROUND: Gliomas have a heterogeneous nature, and identifying the most aggressive parts of the tumor and defining tumor borders are important for histomolecular diagnosis, surgical resection, and radiation therapy planning. This study evaluated [18F]-FACBC PET for glioma tissue classification. METHODS: Pre-surgical [18F]-FACBC PET/MR images were used during surgery and image-localized biopsy sampling in patients with high- and low-grade glioma. TBR was compared to histomolecular results to determine optimal threshold values, sensitivity, specificity, and AUC values for the classification of tumor tissue. Additionally, PET volumes were determined in patients with glioblastoma based on the optimal threshold. [18F]-FACBC PET volumes and diagnostic accuracy were compared to ce-T1 MRI. In total, 48 biopsies from 17 patients were analyzed. RESULTS: [18F]-FACBC had low uptake in non-glioblastoma tumors, but overall higher sensitivity and specificity for the classification of tumor tissue (0.63 and 0.57) than ce-T1 MRI (0.24 and 0.43). Additionally, [18F]-FACBC TBR was an excellent classifier for IDH1-wildtype tumor tissue (AUC: 0.83, 95% CI: 0.71-0.96). In glioblastoma patients, PET tumor volumes were on average eight times larger than ce-T1 MRI volumes and included 87.5% of tumor-positive biopsies compared to 31.5% for ce-T1 MRI. CONCLUSION: The addition of [18F]-FACBC PET to conventional MRI could improve tumor classification and volume delineation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA