Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 15(6): e0237723, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38709067

RESUMO

Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE: Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.


Assuntos
Antimaláricos , Artemisininas , Histona Desacetilase 1 , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Artemisininas/farmacologia , Antimaláricos/farmacologia , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Humanos , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Reprodução Assexuada/genética
2.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38281067

RESUMO

Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/fisiologia , Ativação Viral/fisiologia
3.
Environ Sci Pollut Res Int ; 31(37): 49670-49681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39078552

RESUMO

Wastewater-based environmental surveillance (WBES) has been proven as proxy tool for monitoring nucleic acids of pathogens shed by infected population before clinical outcomes. The poor sewershed network of low to middle-income countries (LMICs) leads to most of the wastewater flow through open drains. We studied the effectiveness of WBES using open drain samples to monitor the emergence of the SARS-CoV-2 variants in 2 megacities of India having dense population through zonation approach. Samples from 28 locations spanned into 5 zones of Pune region, Maharashtra, India, were collected on a weekly basis during October 2021 to July 2022. Out of 1115 total processed samples, 303 (~ 27%) tested positive for SARS-CoV-2. The periodical rise and fall in the percentage positivity of the samples was found to be in sync with the abundance of SARS-CoV-2 RNA and the reported COVID-19 active cases for Pune city. Sequencing of the RNA obtained from wastewater samples confirmed the presence of SARS-CoV-2. Of 337 sequences, lineage identification for 242 samples revealed 265 distinct SARS-CoV-2 variants including 10 highly transmissible ones. Importantly, transition from Delta to Omicron variant could be detected in wastewater samples 2 weeks prior to any clinically reported Omicron cases in India. Thus, this study demonstrates the usefulness of open drain samples for real-time monitoring of a viral pathogen's evolutionary dynamics and could be implemented in LMICs.


Assuntos
COVID-19 , Monitoramento Ambiental , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , Índia , Humanos , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA