Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(16): 9218-9234, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32797159

RESUMO

The HIV-1 Gag protein playing a key role in HIV-1 viral assembly has recently been shown to interact through its nucleocapsid domain with the ribosomal protein L7 (RPL7) that acts as a cellular co-factor promoting Gag's nucleic acid (NA) chaperone activity. To further understand how the two proteins act together, we examined their mechanism individually and in concert to promote the annealing between dTAR, the DNA version of the viral transactivation element and its complementary cTAR sequence, taken as model HIV-1 sequences. Gag alone or complexed with RPL7 was found to act as a NA chaperone that destabilizes cTAR stem-loop and promotes its annealing with dTAR through the stem ends via a two-step pathway. In contrast, RPL7 alone acts as a NA annealer that through its NA aggregating properties promotes cTAR/dTAR annealing via two parallel pathways. Remarkably, in contrast to the isolated proteins, their complex promoted efficiently the annealing of cTAR with highly stable dTAR mutants. This was confirmed by the RPL7-promoted boost of the physiologically relevant Gag-chaperoned annealing of (+)PBS RNA to the highly stable tRNALys3 primer, favoring the notion that Gag recruits RPL7 to overcome major roadblocks in viral assembly.


Assuntos
Infecções por HIV/genética , HIV-1/genética , Proteínas Ribossômicas/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos/genética , Infecções por HIV/virologia , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Chaperonas Moleculares/genética , Conformação de Ácido Nucleico , Ácidos Nucleicos/genética , RNA Viral/genética , Montagem de Vírus/genética
2.
Retrovirology ; 13(1): 54, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515235

RESUMO

BACKGROUND: In HIV-1 infected cells, the integrated viral DNA is transcribed by the host cell machinery to generate the full length HIV-1 RNA (FL RNA) that serves as mRNA encoding for the Gag and GagPol precursors. Virion formation is orchestrated by Gag, and the current view is that a specific interaction between newly made Gag molecules and FL RNA initiates the process. This in turn would cause FL RNA dimerization by the NC domain of Gag (GagNC). However the RNA chaperoning activity of unprocessed Gag is low as compared to the mature NC protein. This prompted us to search for GagNC co-factors. RESULTS: Here we report that RPL7, a major ribosomal protein involved in translation regulation, is a partner of Gag via its interaction with the NC domain. This interaction is mediated by the NC zinc fingers and the N- and C-termini of RPL7, respectively, but seems independent of RNA binding, Gag oligomerization and its interaction with the plasma membrane. Interestingly, RPL7 is shown for the first time to exhibit a potent DNA/RNA chaperone activity higher than that of Gag. In addition, Gag and RPL7 can function in concert to drive rapid nucleic acid hybridization. CONCLUSIONS: Our results show that GagNC interacts with the ribosomal protein RPL7 endowed with nucleic acid chaperone activity, favoring the notion that RPL7 could be a Gag helper chaperoning factor possibly contributing to the start of Gag assembly.


Assuntos
HIV-1/fisiologia , Modelos Moleculares , RNA Viral/química , Proteínas Ribossômicas/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Dimerização , HIV-1/genética , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , RNA Viral/metabolismo , Proteínas Ribossômicas/genética , Montagem de Vírus , Dedos de Zinco , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA