Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12981, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902737

RESUMO

Studies on time allocation of various activities are crucial to understand which behavioural strategy is the most profitable in a given context, and so why animals behave in a particular way. Such investigations usually focus on a time window when the studied activity is performed, often neglecting how the time devoted to focal activity affects time allocation to following-up behaviours, while that may have its own fitness consequences. In this study, we examined time allocation into three post-foraging activities (entering the nest with food, nest attendance, and colony attendance) in a small seabird species, the little auk (Alle alle). Since little auks alternate foraging trips of different duration (short and long) and purpose (offspring feeding and primarily self-feeding, respectively) we expected that duration of the following up in-colony activities would also vary, being longer after a long absence in the colony (because of greater need of reassessment of the current predation pressure and social interactions in the colony, and re-establishing the bond with the offspring and/or partner and/or neighbours after longer absence). We found that it was not always the case, as time allocation of the post-foraging in-colony activities was primarily year- and sex-specific. It highlights the need to consider year and sex effects in studies of behavioural ecology, as not doing so may lead to spurious conclusions. Interestingly, and despite a great inter-individual variation in time allocation in the post-foraging in-colony activities, little auk individuals were quite repeatable in their behavioural performance, which suggests these activities may reflect birds behavioural profile. Overall, post-foraging in-colony activity of the little auk, although not much dependent on duration/type of the preceding foraging flights, varies with respect to year and sex, and as such may be a proxy of behavioural plasticity of the population.


Assuntos
Charadriiformes , Comportamento Alimentar , Animais , Aves , Ecologia , Feminino , Masculino , Comportamento Predatório
2.
Oecologia ; 167(1): 49-59, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21445685

RESUMO

Tradeoffs between current reproduction and future survival are widely recognized, but may only occur when food is limited: when foraging conditions are favorable, parents may be able to reproduce without compromising their own survival. We investigated these tradeoffs in the little auk (Alle alle), a small seabird with a single-egg clutch. During 2005-2007, we examined the relationship between body mass and survival of birds breeding under contrasting foraging conditions at two Arctic colonies. We used corticosterone levels of breeding adults as a physiological indicator of the foraging conditions they encountered during each reproductive season. We found that when foraging conditions were relatively poor (as reflected in elevated levels of corticosterone), parents ended the reproductive season with low body mass and suffered increased post-breeding mortality. A positive relationship between body mass and post-breeding survival was found in one study year; light birds incurred higher survival costs than heavy birds. The results of this study suggest that reproducing under poor foraging conditions may affect the post-breeding survival of long-lived little auks. They also have important demographic implications because even a small change in adult survival may have a large effect on populations of long-lived species.


Assuntos
Peso Corporal , Charadriiformes/fisiologia , Ecossistema , Reprodução , Estresse Fisiológico , Animais , Animais Recém-Nascidos , Comportamento Apetitivo , Corticosterona/sangue , Dieta , Feminino , Groenlândia , Masculino , Desnutrição , Svalbard
3.
Ann N Y Acad Sci ; 1134: 267-319, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18566098

RESUMO

Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate-mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate-induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice-dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.


Assuntos
Ecossistema , Gelo , Animais , Regiões Antárticas , Regiões Árticas , Efeito Estufa , Oceanos e Mares
5.
Environ Pollut ; 218: 196-206, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27567712

RESUMO

Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure.


Assuntos
Comportamento Apetitivo , Monitoramento Ambiental , Cadeia Alimentar , Conteúdo Gastrointestinal/química , Mercúrio/análise , Spheniscidae/metabolismo , Fatores Etários , Animais , Regiões Antárticas , Euphausiacea/metabolismo , Plumas/química , Feminino , Peixes/metabolismo , Masculino , Mercúrio/sangue , Spheniscidae/sangue
6.
PLoS One ; 10(12): e0144232, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629818

RESUMO

Krill (Euphausiids) play a vital ecosystem role in many of the world's most productive marine regions, providing an important trophic linkage. We introduce a robust modeling approach to link Cassin's auklet (Ptychoramphus aleuticus) abundance and distribution to large-scale and local oceanic and atmospheric conditions and relate these patterns to similarly modeled distributions of an important prey resource, krill. We carried out at-sea strip transect bird surveys and hydroacoustic assessments of euphausiids (2004-2013). Data informed separate, spatially-explicit predictive models of Cassin's auklet abundance (zero-inflated negative binomial regression) and krill biomass (two-part model) based on these surveys. We established the type of prey responsible for acoustic backscatter by conducting net tows of the upper 50 m during surveys. We determined the types of prey fed to Cassin's auklet chicks by collecting diet samples from provisioning adults. Using time-depth-recorders, we found Cassin's auklets utilized consistent areas in the upper water column, less than 30 m, where krill could be found (99.5% of dives were less than 30 m). Birds primarily preyed upon two species of euphausiids, Euphausia pacifica and Thysanoessa spinifera, which were available in the upper water column. Cassin's auklet abundance was best predicted by both large scale and localized oceanic processes (upwelling) while krill biomass was best predicted by local factors (temperature, salinity, and fluorescence) and both large scale and localized oceanic processes (upwelling). Models predicted varying krill and bird distribution by month and year. Our work informs the use of Cassin's auklet as a valuable indicator or krill abundance and distribution and strengthens our understanding of the link between Cassin's auklet and its primary prey. We expect future increases in frequency and magnitude of anomalous ocean conditions will result in decreased availability of krill leading to declines in the Farallon Islands population of Cassin's auklets.


Assuntos
Charadriiformes/fisiologia , Euphausiacea/fisiologia , Animais , Clima , Ecossistema , Meio Ambiente , Oceanos e Mares , Densidade Demográfica , Temperatura
7.
Polar Biol ; 38(2): 261-267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26069395

RESUMO

The complete diet composition structure of the most numerous planktivorous sea bird, little auk (Alle alle), in the European Arctic, is still not fully recognized. Although regular constituents of little auk chick diets, the copepods, Calanus glacialis and C. finmarchicus have been previously relatively well described, more taxa were frequent ingredients of the bird's meals. Therefore, the role of the little auks supplementary diet components (SDCs) at two colonies in the Svalbard Archipelago, Hornsund and Magdalenefjorden, in 2007-2009, is a main subject of this comparative study. Because the SDCs often consisted of scarce but large zooplankters, this investigation was focused on biomass as a proxy of the SDCs' energy input. Although the total biomass of the food delivered to chicks in both colonies was similar, in Magdalenefjorden, the proportion of SDCs was twice that found in Hornsund. The main SDCs in Hornsund were Decapoda larvae (with predominating Pagurus pubescens) and Thysanoessa inermis, whereas the main SDCs in Magdalenefjorden were C. hyperboreus and Apherusa glacialis. Previous investigations, which indicated lipid richness of SDCs, together with our ecological results from the colonies, suggest that this category might play a compensatory role in little auk chick diets. The ability to forage on diverse taxa may help the birds to adapt to ongoing Arctic ecosystem changes.

8.
Environ Pollut ; 128(3): 327-38, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14720475

RESUMO

Organochlorine contaminants (OCs) were determined in liver and fat of seven species of seabirds (Alle alle, Uria lomvia, Cepphus grylle, Rissa tridactyla, Pagophila eburnea, Larus hyperboreus, and Fulmaris glacialis) collected in May/June 1998 from the Northwater Polynya in northern Baffin Bay. OC concentrations ranged over an order of magnitude between seabird species and OC groups, with PCBs having the highest concentrations followed by DDT, chlordane, HCH and ClBz. Positive relationships between delta15N (estimator of trophic level) and OC concentrations (lipid basis) were found for all OC groups, showing that trophic position and biomagnification significantly influence OC concentrations in Arctic seabirds. Concentrations of a number of OCs in particular species (e.g., HCH in P. eburnean) were lower than expected based on delta15N and was attributed to biotransformation. P. eburnea and F. glacialis, which scavenge, and R. tridactyla, which migrate from the south, were consistently above the delta15N-OC regression providing evidence that these variables can elevate OC concentrations. Stable isotope measurements in muscle may not be suitable for identifying past scavenging events by seabirds. OC relative proportions were related to trophic position and phylogeny, showing that OC biotransformation varies between seabird groups. Trophic level, migration, scavenging and biotransformation all play important roles in the OCs found in Arctic seabirds.


Assuntos
Aves/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos Clorados/metabolismo , Tecido Adiposo/metabolismo , Animais , Regiões Árticas , Carbono/análise , Monitoramento Ambiental , Feminino , Cadeia Alimentar , Fígado/metabolismo , Masculino , Isótopos de Nitrogênio/análise , Músculos Peitorais/metabolismo
9.
PLoS One ; 6(10): e26642, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22053199

RESUMO

Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models.


Assuntos
Dieta , Conteúdo Gastrointestinal/química , Marcação por Isótopo/métodos , Spheniscidae/metabolismo , Animais , Isótopos de Carbono , Plumas/metabolismo , Feminino , Peixes , Geografia , Masculino , Modelos Biológicos , Isótopos de Nitrogênio , Membrana dos Otólitos/metabolismo , Comportamento Predatório , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA