RESUMO
INTRODUCTION: Frozen shoulder (adhesive capsulitis) is a common painful and functionally-limiting disease affecting around 2% of the population. So far, therapeutic options are limited and often unsatisfactory. Platelet-rich plasma (PRP) has been used as a treatment option in other orthopedic diseases since it contains growth factors that stimulate tissue repair. So far, the effect of PRP on frozen shoulder lacks evidence. We hypothesized that PRP may be valuable in the prophylaxis and treatment of secondary frozen shoulder due to capsular remodeling. MATERIALS AND METHODS: An experimental study of an in vivo frozen shoulder model was conducted. Twenty Sprague-Dawley rats underwent surgery in which the body of the scapula was connected to the humerus with a high-strength suture. Two groups of 8 weeks survival time were allocated; a treatment group with one intraoperative injection of PRP into the glenohumeral joint (n = 10) and a control group without PRP (n = 10). The primary outcome was the structural change in the posterior synovial membrane of the posterior and inferior part of the glenohumeral joint using a semi-quantitative grading from 0 (lowest) to 3 (highest). RESULTS: The posterior synovial membrane structural changes were significantly lower in the PRP group (median = 1 [interquartile range (IQR) = 0-1]) compared to controls (median = 2 [IQR = 1-3]) (p = 0.028). There were no differences for the remaining synovial membrane changes and fibrous capsule responses between groups. CONCLUSIONS: In this in vivo shoulder contracture model, PRP injections seem to reduce the histological severity grade of some parts (i.e., posterior synovial membrane changes) of the secondary frozen shoulder without causing any side effects. It may be considered to investigate this effect further in future studies as a potential prophylaxis of secondary frozen shoulder (e.g., in operated or immobilized shoulders) or as a treatment option for patients with frozen shoulder in the early stage.
Assuntos
Bursite , Contratura , Plasma Rico em Plaquetas , Articulação do Ombro , Animais , Bursite/terapia , Contratura/prevenção & controle , Humanos , Ratos , Ratos Sprague-Dawley , OmbroRESUMO
Background There is an ongoing scientific debate about the degree and clinical importance of gadolinium deposition in the brain and other organs after administration of gadolinium-based contrast agents (GBCAs). While most published data focus on gadolinium deposition in the brain, other organs are rarely investigated. Purpose To compare gadolinium tissue concentrations in various organs 10 weeks after one injection (comparable to a clinically applied dose) of linear and macrocyclic GBCAs in a large-animal model. Materials and Methods In this prospective animal study conducted from March to May 2018, 36 female Swiss-Alpine sheep (age range, 4-10 years) received one injection (0.1 mmol/kg) of macrocyclic GBCAs (gadobutrol, gadoteridol, and gadoterate meglumine), linear GBCAs (gadodiamide and gadobenate dimeglumine), or saline. Ten weeks after injection, sheep were sacrificed and tissues were harvested. Gadolinium concentrations were quantified with inductively coupled plasma mass spectrometry (ICP-MS). Histologic staining was performed. Data were analyzed with nonparametric tests. Results At 10 weeks after injection, linear GBCAs resulted in highest mean gadolinium concentrations in the kidney (502 ng/g [95% CI: 270, 734]) and liver (445 ng/g [95% CI: 202, 687]), while low concentrations were found in the deep cerebellar nuclei (DCN) (30 ng/g [95% CI: 20, 41]). Tissue concentrations of linear GBCAs were three to 21 times higher compared with those of macrocyclic GBCAs. Administered macrocyclic GBCAs resulted in mean gadolinium concentrations of 86 ng/g (95% CI: 31, 141) (P = .08) in the kidney, 21 ng/g (95% CI: 4, 39) (P = .15) in liver tissue, and 10 ng/g (95% CI: 9, 12) (P > .99) in the DCN, which were not significantly elevated when compared with concentrations in control animals. No histopathologic alterations were observed irrespective of tissue concentrations within any examined organ. Conclusion Ten weeks after one injection of a clinically relevant dose of gadolinium-based contrast agents, the liver and kidney appeared to be reservoirs of gadolinium; however, despite gadolinium presence, no tissue injury was detected. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Clément in this issue.
Assuntos
Encéfalo/metabolismo , Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Rim/metabolismo , Fígado/metabolismo , Animais , Feminino , Modelos Animais , Estudos Prospectivos , Ovinos , Distribuição TecidualRESUMO
BACKGROUND: Objective of this study is a feasibility-test comparing hock- and footpad-injection in rats with inoculated MatLyLu - adenocarcinoma tumor model. This study compares the development of an adenocarcinoma model (MatLyLu) in 12 Copenhagen rats. Two groups (n = 6) of animals were inoculated with 1 × 106 MatLyLu tumor cells solved in 0.1 ml NaCl either by footpad or hock injection. All animals were examined before tumor inoculation and before euthanasia using a 3.0 Tesla MRI. Histological evaluation of all organs was performed post mortem. RESULTS: Both types of injection were able to induce the adenocarcinoma model using MatLyLu tumor cells. The primary tumor could be visualized in MRI and confirmed histologically. Comparing the risk of reflux and the maximum injection volume during injection, the hock injection was superior to the footpad injection (less reflux, less anatomical restrictions for larger volumes). The hock injection induces a faster tumor growth compared to the footpad injection. As consequence the maximum level of long term discomfort after hock injection was reached earlier, even if it grew on a not weight bearing structure. Early lymph node tumor metastasis could not be observed macroscopically nor detected histologically. Therefore the reproducibility of the MatLyLu tumor model is questionable. CONCLUSION: Hock injection is a feasible alternative technique compared with footpad-injection in rats. It provides a save and easy injection method for various early-terminated applications with the potential to increase animal welfare during tumor models in rats.
Assuntos
Adenocarcinoma/veterinária , Modelos Animais de Doenças , Pé , Transplante de Neoplasias/veterinária , Neoplasias da Próstata/veterinária , Tarso Animal , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Animais , Feminino , Injeções/veterinária , Imageamento por Ressonância Magnética , Masculino , Transplante de Neoplasias/diagnóstico por imagem , Transplante de Neoplasias/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , RatosRESUMO
OBJECTIVES: To evaluate a novel, ready-to-use, iodinated polyvinyl alcohol polymer embolic implant. METHODS: Under good laboratory practice conditions, 26 pigs were investigated. A complex arteriovenous malformation (AVM) model was created in 16 animals, and a simple rete model was used in the remaining 10 animals. The novel material was used for embolization in 22 animals, and a commercially available liquid embolic material in 4 animals as a control group. Animals were killed at 2 days, 3 months and 6 months. Feasibility, efficacy and safety were evaluated radiologically, clinically and histologically. RESULTS: Preparation was easy, without risk of catheter clogging or adhesiveness. Embolic delivery was well controlled under subtracted fluoroscopy. Visibility was homogeneous throughout the injection and the material behaved cohesively upon delivery. Best lesion penetration was obtained with the use of proximal microballoon occlusion. Unforeseen over-dilution of the test material by DMSO prefilled in the microballoon hub changed the material properties and caused inadvertent cerebral embolization leading to death in five animals. This phenomenon was avoided by practical measures. The casts produced no beam-hardening artefacts on CT scans. Histology showed excellent biocompatibility. CONCLUSIONS: Embolization with this novel, iodinated, precipitating polymer was feasible and effective. Care should be taken during delivery to avoid over-dilution of the material by prefilled DMSO. The material is promising for embolization of AVMs and hypervascular lesions. KEY POINTS: ⢠The intrinsically opaque precipitating polymer has adequate fluoroscopic visibility ⢠The polymer does not induce shading or beam-hardening artefacts on CT ⢠The novel liquid embolic material does not require lengthy preparation ⢠Lack of implant adherence reduces the risk of entrapment of the delivery catheter.
Assuntos
Malformações Arteriovenosas/terapia , Embolização Terapêutica/métodos , Álcool de Polivinil/administração & dosagem , Animais , Malformações Arteriovenosas/diagnóstico por imagem , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Polímeros , Suínos , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. METHODS: PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. RESULTS: The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. DISCUSSION: Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks.
Assuntos
Atrofia Muscular/etiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Lesões do Manguito Rotador/patologia , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/patologia , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/etiologia , TenotomiaRESUMO
Non-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for in vivo tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair. In this study, the mechanical properties and degradation behavior as well as the biocompatibility of a low-cost synthetic, pathogen-free, biocompatible and biodegradable extracellular matrix mimicking a PUR scaffold was evaluated in vitro. The novel PUR scaffolds were found to meet all the requirements for optimal scaffolds and wound dressings. These three-dimensional scaffolds are soft, highly porous, and form-stable and can be easily cut into any shape desired. All the material formulations investigated were found to be nontoxic. One formulation was able to be defined that supported both good fibroblast cell attachment and cell proliferation to colonize the scaffold. Tunable biodegradation velocity of the materials could be observed, and the results additionally indicated that calcium plays a crucial role in PUR degradation. Our results suggest that the PUR materials evaluated in this study are promising candidates for next-generation wound treatment systems and support the concept of using foam scaffolds for improved in vivo tissue engineering and regeneration.
RESUMO
OBJECTIVES: We report a preclinical comparative study of a 96-strand braided flow diverter. METHODS: The 96-strand braided device was compared with the currently commercially available flow diverter with 48 strands. The devices were implanted across the neck of 12 elastase-induced aneurysms in New Zealand White rabbits and followed for 1 and 3 months (n = 6 respectively). Aneurysm occlusion rates, parent artery stenosis and patency of jailed branch occlusions were assessed by angiography, histology and scanning electron microscopy studies. RESULTS: It was feasible to navigate and implant the 96-strand device over the aneurysm orifice in all cases. At follow-up two aneurysms in the 48-strand vs. one in the 96-strand group were not occluded. This aneurysm from the 96-strand group however had a tracheal branch arising from the sac and showed a reverse remodelling of the vascular pouch at 3 months. In the occluded aneurysms, the parent artery was always completely reconstructed and the aneurysm orifice was sealed with neointimal tissue. No in-stent stenosis or jailed branch artery occlusion was observed. CONCLUSIONS: The 96-strand flow diverter proved to be safe, biocompatible and haemodynamically effective, induced stable occlusion of aneurysms and led to reverse remodelling of the parent artery. KEY POINTS: ⢠Flow diversion has been introduced to improve endovascular treatment of cerebral aneurysms ⢠A new low-permeability flow diverter is feasible for parent artery reconstruction. ⢠The Silk 96 flow diverter appears effective at inducing aneurysm healing. ⢠The covered branches remained patent at follow-up.
Assuntos
Aneurisma/cirurgia , Doenças das Artérias Carótidas/cirurgia , Artéria Carótida Primitiva , Stents , Aneurisma/diagnóstico por imagem , Aneurisma/patologia , Angiografia Digital , Animais , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/patologia , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Permeabilidade , Desenho de Prótese , CoelhosRESUMO
BACKGROUND: Gadolinium-based contrast agents (GBCAs) are applied to enhance magnetic resonance imaging. Gadolinium (Gd), a rare earth metal, is used in a chelated form when administered as GBCA to patients. There is an ongoing scientific debate about the clinical significance of Gd retention in tissues after administration of GBCAs. It is known that bone serves as Gd reservoir, but only sparse information on localization of Gd in bone is available. PURPOSE: The aim of this study was to compare Gd tissue concentration and spatial distribution in femoral epiphysis and diaphysis 10 weeks after single-dose injection of linear and macrocyclic GBCAs in a large animal model. MATERIALS AND METHODS: In this prospective animal study, Swiss-Alpine sheep (n = 36; age range, 4-10 years) received a single injection (0.1 mmol/kg) of macrocyclic (gadobutrol, gadoteridol, and gadoterate meglumine), linear (gadodiamide and gadobenate dimeglumine) GBCAs, or saline. Ten weeks after injection, sheep were killed, and femur heads and shafts were harvested. Gadolinium spatial distribution was determined in 1 sample of each treatment group by laser ablation-inductively coupled plasma-mass spectrometry. All bone specimens were analyzed histopathologically. RESULTS: Injection of GBCAs in female Swiss-Alpine sheep (n = 36) resulted in Gd localization at the endosteal and periosteal surface and in a subset of GBCAs additionally at the cement lines and the bone cartilage junction. No histopathological alterations were observed in the investigated tissue specimens. CONCLUSIONS: Ten weeks after single injection of a clinically relevant dose in adult sheep, both linear species of GBCA resulted in considerably higher accumulation than macrocyclic GBCAs. Gadolinium deposits were restricted to distinct bone and cartilage compartments, such as in bone linings, cement lines, and bone cartilage junctions. Tissue histology remained unaffected.
Assuntos
Cartilagem Articular , Compostos Organometálicos , Humanos , Feminino , Animais , Ovinos , Pré-Escolar , Criança , Meios de Contraste , Gadolínio , Cartilagem Articular/diagnóstico por imagem , Estudos Prospectivos , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodos , EncéfaloRESUMO
Endometriosis is a disease affecting approximately 10% of reproductive age women. Loss of the tumor suppressor gene AT-rich interactive domain-containing protein 1A (ARID1A) occurs in some endometriosis cases. Histone deacetylase 6 (HDAC-6) is an enzyme with implication in several diseases including different cancer types and immunological disorders, where it is involved in protein trafficking and degradation, cell shape, and migration. In ARID1A-deficient ovarian cancer increased HDAC-6 expression lead to apoptosis-inhibiting post-translational modification of p53. It is not known if HDAC-6 expression is also altered in ARID1A-deficient endometriosis. The aim of this study was to assess HDAC-6 expression in endometriotic lesions in correlation to ARID1A-status. Two tissue-microarrays with 168 endometriotic lesions, including ovarian (64/168, 38 %), peritoneal (66/168, 39 %) and deep-infiltrating (38/168, 23 %) subtypes, and 73 endometrium of women without endometriosis were assessed. Mean ARID1A immunoreactivity score (IRS) in endometriosis group was 10.83 (±2.36) and 10.78 (±1.94) in the epithelium and stroma, respectively, while the respective mean HDAC6 IRS were 9.16 (±2.76) and 5.94 (±2.88). The comparison of the HDAC6 expression between endometriosis subtypes showed higher expression in deep-infiltrating endometriosis, in both, epithelium (p = 0.032) and stroma (p = 0.007). In ARID1A negative cases, epithelial expression of HDAC6 was higher in endometriosis compared to women without endometriosis (p = 0.031), and this was also specifically observed in the subset of ovarian endometriosis (p = 0.037). There were no significant differences in the stromal expression of HDAC6. In conclusion, our results demonstrate a complex expression pattern of HDAC6 depending on ARID1A status in different endometriosis subtypes. Further studies on HDAC6 and ARID1A are important to elucidate mechanisms involved in malignant transformation of endometriosis.
Assuntos
Proteínas de Ligação a DNA , Endometriose , Desacetilase 6 de Histona , Fatores de Transcrição , Humanos , Feminino , Endometriose/metabolismo , Endometriose/patologia , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Adulto , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Estudos Retrospectivos , Análise Serial de Tecidos , Endométrio/metabolismo , Endométrio/patologia , Pessoa de Meia-IdadeRESUMO
To date, several types of airway stents are available to treat central airway obstructions. However, the ideal stent that can overcome anatomical, mechanical and microbiological issues is still awaited. In addition, therapeutic effect and self-elimination of these stents are desirable properties, which pose an additional challenge for development and manufacturing. We aimed to create a prototype bioresorbable tracheal stent with acceptable clinical tolerance, fit and biocompatibility, that could be tested in a rabbit model and in the future be further optimized to enable drug-elution and ensure local therapeutic effect. Twenty-one New Zealand White Rabbits received five different types of bioresorbable tracheal stents, 3D-printed from poly(D,L-lactide-co-ε-caprolactone) metacrylates. Various configurations were tested for their functionality and improved until the best performing prototype could undergo detailed in vivo assessment, regarding clinical tolerance, migration and biocompatibility. Previously tested types of 3D printed stents in our preliminary study required improvement due to several problems, mainly related to breakage, unreliable stability and/or migration within the trachea. Abandoned or refined pre-prototypes were not analyzed in a comparative way. The final best performing prototype stent (GSP2 (Group Stent Prototype 2), n = 8) allowed a transoral application mode and showed good clinical tolerance, minimal migration and acceptable biocompatibility. The good performance of stent type GSP2 was attributed to the helix-shaped surface structure, which was therefore regarded as a key-feature. This prototype stent offers the possibility for further research in a large animal model to confirm the promising data and assess other properties such as bioresorption.
Assuntos
Implantes Absorvíveis , Impressão Tridimensional , Stents , Traqueia , Animais , Coelhos , Stents/efeitos adversos , Teste de Materiais , Materiais Biocompatíveis/química , Desenho de Prótese , Poliésteres/químicaRESUMO
BACKGROUND: PARP-1 (poly[ADP-ribose]) was shown to influence the inflammatory response after rotator cuff tear, leading to fibrosis, muscular atrophy, and fatty infiltration in mouse rotator cuff degeneration. So far, it is not known how PARP-1 influences enthesis healing after rotator cuff tear repair. HYPOTHESIS/PURPOSE: This study aimed to examine the feasibility of oral PARP-1 inhibition and investigate its influence on rat supraspinatus enthesis and muscle healing after rotator cuff repair. The hypothesis was that oral PARP-1 inhibition would improve enthesis healing after acute rotator cuff repair in a rat model. STUDY DESIGN: Controlled laboratory study. METHODS: In 24 Sprague-Dawley rats, the supraspinatus tendon was sharply detached and immediately repaired with a single transosseous suture. The rats were randomly allocated into 2 groups, with the rats in the inhibitor group receiving veliparib with a target dose of 12.5 mg/kg/d via drinking water during the postoperative recovery period. The animals were sacrificed 8 weeks after surgery. For the analysis, macroscopic, biomechanical, and histologic methods were used. RESULTS: Oral veliparib was safe for the rats, with no adverse effects observed. In total, the inhibitor group had a significantly better histologic grading of the enthesis with less scar tissue formation. The macroscopic cross-sectional area of the supraspinatus muscles was 10.5% higher (P = .034) in the inhibitor group, which was in agreement with an 8.7% higher microscopic muscle fiber diameter on histologic sections (P < .0001). There were no statistically significant differences in the biomechanical properties between the groups. CONCLUSION: This study is the first to investigate the influence of PARP-1 inhibition on healing enthesis. On the basis of these findings, we conclude that oral veliparib, which was previously shown to inhibit PARP-1 effectively, is safe to apply and has beneficial effects on morphologic enthesis healing and muscle fiber size. CLINICAL RELEVANCE: Modulating the inflammatory response through PARP-1 inhibition during the postoperative healing period is a promising approach to improve enthesis healing and reduce rotator cuff retearing. With substances already approved by the Food and Drug Administration, PARP-1 inhibition bears high potential for future translation into clinical application.
Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Ratos , Camundongos , Animais , Manguito Rotador/patologia , Lesões do Manguito Rotador/tratamento farmacológico , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Cicatrização/fisiologia , Estudos de Viabilidade , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ratos Sprague-Dawley , Fenômenos BiomecânicosRESUMO
Background: Vertebral endplate signal intensity changes visualized by magnetic resonance imaging termed Modic changes (MC) are highly prevalent in low back pain patients. Interconvertibility between the three MC subtypes (MC1, MC2, MC3) suggests different pathological stages. Histologically, granulation tissue, fibrosis, and bone marrow edema are signs of inflammation in MC1 and MC2. However, different inflammatory infiltrates and amount of fatty marrow suggest distinct inflammatory processes in MC2. Aims: The aims of this study were to investigate (i) the degree of bony (BEP) and cartilage endplate (CEP) degeneration in MC2, (ii) to identify inflammatory MC2 pathomechanisms, and (iii) to show that these marrow changes correlate with severity of endplate degeneration. Methods: Pairs of axial biopsies (n = 58) spanning the entire vertebral body including both CEPs were collected from human cadaveric vertebrae with MC2. From one biopsy, the bone marrow directly adjacent to the CEP was analyzed with mass spectrometry. Differentially expressed proteins (DEPs) between MC2 and control were identified and bioinformatic enrichment analysis was performed. The other biopsy was processed for paraffin histology and BEP/CEP degenerations were scored. Endplate scores were correlated with DEPs. Results: Endplates from MC2 were significantly more degenerated. Proteomic analysis revealed an activated complement system, increased expression of extracellular matrix proteins, angiogenic, and neurogenic factors in MC2 marrow. Endplate scores correlated with upregulated complement and neurogenic proteins. Discussion: The inflammatory pathomechanisms in MC2 comprises activation of the complement system. Concurrent inflammation, fibrosis, angiogenesis, and neurogenesis indicate that MC2 is a chronic inflammation. Correlation of endplate damage with complement and neurogenic proteins suggest that complement system activation and neoinnervation may be linked to endplate damage. The endplate-near marrow is the pathomechanistic site, because MC2 occur at locations with more endplate degeneration. Conclusion: MC2 are fibroinflammatory changes with complement system involvement which occur adjacent to damaged endplates.
RESUMO
BACKGROUND: The cause, extent, and role of muscle edema for muscle degeneration are unknown and not considered in the current literature. In vivo experiments were designed to prove muscle edema formation in the early period in a sheep model of acute rotator cuff tears. HYPOTHESIS: Muscle edema occurs after tendon release with or without additional stretching trauma and may be associated with muscle retraction and subsequent muscle degeneration. STUDY DESIGN: Controlled laboratory study. METHODS: A sheep model with acute release of the infraspinatus tendon was used. An osteotomy of the greater tuberosity, including the insertion of the infraspinatus tendon, was performed in 14 sheep. To demonstrate presence of edema, magnetic resonance imaging scans were performed at 0, 2, and 4 weeks using T1-weighted, T2-weighted, proton density-weighted, and Dixon sequences. Excisional biopsy specimens were taken at 0, 3, and 4 weeks (histological results will be reported in a later publication). Two injury models were created: a nontrauma group that consisted of muscle release alone and a trauma group that included additional standardized traction to the musculotendinous unit. Evaluation of T1- and T2-weighted images included calculation of pennation angle, muscle fiber length, signal intensity (edema), and muscle volume. Muscle wet weight and volume were measured at sacrifice. RESULTS: Edema formation was shown in all sheep and slightly more pronounced in the trauma group, where muscle intensity increased significantly between time point 0 (200 Grey Value (GV)) and weeks 2, 3, and 4 (300 GV). Edema formation started early after tendon release with a plateau between 3 and 4 weeks. Deterioration of muscle fiber bundles began also after tendon release with a peak at 4 weeks. Muscle volume decreased steadily over time. CONCLUSION: Muscle edema appeared early after rotator cuff tendon release, was more pronounced in the trauma group, and reached a plateau after 3 to 4 weeks. Muscle fatty content decreased within the short period of 4 weeks owing to a dilution effect. Muscle edema seems to be an essential factor in cuff tears and subsequent muscle retraction and degeneration. CLINICAL RELEVANCE: This study demonstrates a new type of muscle edema of retraction and describes the characteristics of edema associated with a retracted rotator cuff tear.
Assuntos
Lesões do Manguito Rotador , Animais , Modelos Teóricos , Projetos de Pesquisa , Ovinos , Modelos Animais de DoençasRESUMO
Objective: Modic changes (MC) are vertebral bone marrow lesions seen on magnetic resonance images, that associate with disc degeneration and low back pain (LBP). Few studies described MC histopathology qualitatively based on a few patient samples. CD90-positive bone marrow stromal cells were shown to be pro-fibrotic in MC. We aimed to provide the first semi-quantitative histomorphometric analysis of MC bone marrow. We hypothesized a role of CD90-positive cells in MC pathomechanisms. Design: Human biopsies from Modic type 1 changes (MC1, n â= â8), Modic type 2 changes (MC2, n â= â6), and control biopsies (MC0, n â= â8) from adjacent vertebrae were obtained from 14 LBP patients during lumbar spinal fusion. Biopsies were processed for histology/immunohistochemistry. Inflammatory changes (oedema, inflammatory infiltrates), fibrotic changes (connective tissue, type I and III collagen, fibronectin, α-smooth muscle actin), and amount of bone marrow stromal cells (CD90, CD105) were scored. Scores for MC0, MC1, and MC2 were compared with non-parametric tests. Pairwise correlations, hierarchical clustering, and principal component analysis of histological readouts were calculated to identify most important histomorphometric MC characteristics. Results: Compared to MC0, MC1 had more connective tissue, oedema, inflammatory infiltrates, and CD90+ cells. MC2 compared to MC0 had more oedema and CD90+ cells. Scores of CD90 correlated and clustered with inflammatory and fibrotic changes. Amount of connective tissue correlated with LBP. Conclusion: Accumulation of CD90+ cells is a major characteristic of MC in patients undergoing lumbar spinal fusion and associates with inflammatory and fibrotic changes. Therefore, CD90+ cells may play an important role in the inflammatory-fibrotic pathomechanisms of MC.
RESUMO
The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.
Assuntos
Senilidade Prematura , Envelhecimento/genética , Envelhecimento/metabolismo , Senilidade Prematura/genética , Animais , Longevidade , Mamíferos/genética , Camundongos , Espécies Reativas de Oxigênio , TelômeroRESUMO
Orthopedic implant-associated bacterial infections with Staphylococcus aureus constitute a major clinical problem, and large pre-clinical animal models remain scarce. The aim of this study was to establish a standardized method of a localized, acute S. aureus bone infection in the presence of complex implanted devices in a sheep model. Four sheep underwent surgery receiving a complex implanted metallic device with a component stabilizing a bone defect created in the left tibial metaphysis, and an attached component placed in adjacent soft tissue. The bone defect was inoculated with S. aureus strain ATCC25293 (1 × 104 CFU). Twenty one days later, the surgery site was macroscopically evaluated, tissue samples and implants harvested for bacterial cell count quantification and tissue samples histologically analyzed. The animals exhibited clinical signs of localized infection (e.g. swelling, lameness, pain) but did not develop symptoms of sepsis. After euthanasia, macroscopic assessment revealed a localized bone and soft tissue infection at the surgery site. Histologically, an acute inflammation with neutrophils but also signs of bone destruction with necrosis was noted. An ovine model of a localized, acute S. aureus bone infection with complex implants was successfully established and could be used to test novel treatments against orthopedic implant-associated infections.
Assuntos
Osteomielite/microbiologia , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Animais , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Humanos , Osteomielite/diagnóstico por imagem , Osteomielite/patologia , Próteses e Implantes/microbiologia , Ovinos , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/patologiaRESUMO
BACKGROUND: Aberrant mechanical loading of the spine causes intervertebral disc (IVD) degeneration and low back pain. Current therapies do not target the mediators of the underlying mechanosensing and mechanotransduction pathways, as these are poorly understood. This study investigated the role of the mechanosensitive transient receptor potential vanilloid 4 (TRPV4) ion channel in dynamic compression of bovine nucleus pulposus (NP) cells in vitro and mouse IVDs in vivo. METHODS: Degenerative changes and the expression of the inflammatory mediator cyclooxygenase 2 (COX2) were examined histologically in the IVDs of mouse tails that were dynamically compressed at a short repetitive hyperphysiological regime (vs sham). Bovine NP cells embedded in an agarose-collagen hydrogel were dynamically compressed at a hyperphysiological regime in the presence or absence of the selective TRPV4 antagonist GSK2193874. Lactate dehydrogenase (LDH) and prostaglandin E2 (PGE2) release, as well as phosphorylation of mitogen-activated protein kinases (MAPKs), were analyzed. Degenerative changes and COX2 expression were further evaluated in the IVDs of trpv4-deficient mice (vs wild-type; WT). RESULTS: Dynamic compression caused IVD degeneration in vivo as previously shown but did not affect COX2 expression. Dynamic compression significantly augmented LDH and PGE2 releases in vitro, which were significantly reduced by TRPV4 inhibition. Moreover, TRPV4 inhibition during dynamic compression increased the activation of the extracellular signal-regulated kinases 1/2 (ERK) MAPK pathway by 3.13-fold compared to non-compressed samples. Trpv4-deficient mice displayed mild IVD degeneration and decreased COX2 expression compared to WT mice. CONCLUSIONS: TRPV4 therefore regulates COX2/PGE2 and mediates cell damage induced by hyperphysiological dynamic compression, possibly via ERK. Targeted TRPV4 inhibition or knockdown might thus constitute promising therapeutic approaches to treat patients suffering from IVD pathologies caused by aberrant mechanical stress.
RESUMO
Central airway obstruction is a life-threatening disorder causing a high physical and psychological burden to patients. Standard-of-care airway stents are silicone tubes, which provide immediate relief but are prone to migration. Thus, they require additional surgeries to be removed, which may cause tissue damage. Customized bioresorbable airway stents produced by 3D printing would be highly needed in the management of this disorder. However, biocompatible and biodegradable materials for 3D printing of elastic medical implants are still lacking. Here, we report dual-polymer photoinks for digital light 3D printing of customized and bioresorbable airway stents. These stents exhibit tunable elastomeric properties with suitable biodegradability. In vivo study in healthy rabbits confirmed biocompatibility and showed that the stents stayed in place for 7 weeks after which they became radiographically invisible. This work opens promising perspectives for the rapid manufacturing of the customized medical devices for which high precision, elasticity, and degradability are sought.
Assuntos
Implantes Absorvíveis , Impressão Tridimensional , Animais , Elasticidade , Humanos , Polímeros , Coelhos , StentsRESUMO
Drip loss is the loss of fluid from a piece of meat without mechanical force and represents an important meat quality trait. Previous work revealed a quantitative trait locus (QTL) for drip loss in pork in an experimental Duroc x Pietrain (DUPI) F2 family on SSC 5. Based on functional data indicating their possible involvement in water holding capacity and their expression in skeletal muscle, we selected five positional candidates (ACO2, ADSL, CBY1, KCNJ4, PLA2AG6) out of 130 predicted genes in the QTL interval for further analysis. We performed a mutation analysis of all coding exons and discovered 204 polymorphisms. We genotyped 39 single nucleotide polymorphisms (SNPs) in 192 Pietrain pigs with extreme drip loss phenotypes and detected a possible association with drip loss for one non-coding SNP in the ADSL gene (ss107793818, p(raw) = 0.021). Correspondingly, ADSL diplotypes were associated with drip loss and pH1 of M. longissimus dorsi. However, after correction for multiple testing, none of the tested SNPs were significantly associated with drip loss. One possible explanation for these results is that one of the QTL-alleles from the experimental DUPI family may be fixed or nearly fixed in the tested Pietrain population.
Assuntos
Regulação da Expressão Gênica/fisiologia , Marcadores Genéticos/genética , Suínos/genética , Água/fisiologia , Animais , DNA/análise , Feminino , Genótipo , Masculino , Carne/normas , Locos de Características QuantitativasRESUMO
OBJECTIVE: Intracranial aneurysms (IAs) are more often diagnosed in women. Hormones and vessel geometry, which influences wall shear stress, may affect pathophysiological processes of the arterial wall. Here, the authors investigated sex-related differences in the remodeling of the aneurysm wall and in intraluminal thrombus resolution. METHODS: A well-characterized surgical side-wall aneurysm model was used in female, male, and ovariectomized rats. Decellularized grafts were used to model highly degenerated and decellularized IA walls and native grafts to model healthy IA walls. Aneurysm growth and thrombus composition were analyzed at 1, 7, 14, and 28 days. Sex-related differences in vessel wall remodeling were compared with human IA dome samples of men and pre- and postmenopausal women. RESULTS: At 28 days, more aneurysm growth was observed in ovariectomized rats than in males or non-ovariectomized female rats. The parent artery size was larger in male rats than in female or ovariectomized rats, as expected. Wall inflammation increased over time in all groups and was most severe in the decellularized female and ovariectomized groups at 28 days compared with the male group. Likewise, in these groups the most elastin fragmentation was seen at 28 days. In female rats, on days 1, 7, and 14, the intraluminal thrombus was mainly composed of red blood cells and fibrin. On days 14 and 28, macrophage and smooth muscle cell invasion inside the thrombus was shown, leading to the removal of red blood cells and deposition of collagen and elastin. On days 14 and 28, similar profiles of thrombus reorganization were observed in male and ovariectomized female rats. However, collagen content in thrombi and vessel wall macrophage content were higher in aneurysms of male rats at 28 days than in those of female rats. On day 28, thrombus coverage by endothelial cells was lower in ovariectomized than in female or male rats. Finally, analysis of human IA domes showed that endothelial cell coverage was lower in men and postmenopausal women than in younger women. CONCLUSIONS: Aneurysm growth and intraluminal thrombus resolution show sex-dependent differences. While certain processes (endothelial cell coverage and collagen deposition) point to a strong hormonal dependence, others (wall inflammation and aneurysm growth) seem to be influenced by both hormones and parent artery size.