Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(10): 7453-7465, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848133

RESUMO

The photodissociation dynamics of the dimethyl-substituted acetone oxide Criegee intermediate [(CH3)2COO] is characterized following electronic excitation to the bright 1ππ* state, which leads to O (1D) + acetone [(CH3)2CO, S0] products. The UV action spectrum of (CH3)2COO recorded with O (1D) detection under jet-cooled conditions is broad, unstructured, and essentially unchanged from the corresponding electronic absorption spectrum obtained using a UV-induced depletion method. This indicates that UV excitation of (CH3)2COO leads predominantly to the O (1D) product channel. A higher energy O (3P) + (CH3)2CO (T1) product channel is not observed, although it is energetically accessible. In addition, complementary MS-CASPT2 trajectory surface-hopping (TSH) simulations indicate minimal population leading to the O (3P) channel and non-unity overall probability for dissociation (within 100 fs). Velocity map imaging of the O (1D) products is utilized to reveal the total kinetic energy release (TKER) distribution upon photodissociation of (CH3)2COO at various UV excitation energies. Simulation of the TKER distributions is performed using a hybrid model that combines an impulsive model with a statistical component, the latter reflecting the longer-lived (>100 fs) trajectories identified in the TSH calculations. The impulsive model accounts for vibrational activation of (CH3)2CO arising from geometrical changes between the Criegee intermediate and the carbonyl product, indicating the importance of CO stretch, CCO bend, and CC stretch along with activation of hindered rotation and rock of the methyl groups in the (CH3)2CO product. Detailed comparison is also made with the TKER distribution arising from photodissociation dynamics of CH2OO upon UV excitation.

2.
J Phys Chem A ; 127(31): 6377-6384, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523496

RESUMO

Hydrofluoroolefins (HFO) are fourth-generation refrigerants designed to function as efficient refrigerants with no ozone depletion potential and zero global warming potential. Despite extensive studies on their chemical and physical properties, the ground- and excited-state chemistry of their atmospheric oxidation products is less well understood. This study focuses on the ground- and excited-state chemistry of the simplest fluorinated Criegee intermediate (CI), fluoroformaldehyde oxide (HFCOO), which is the simplest fluorinated CI formed from the ozonolysis of HFOs. HFCOO contains syn- and anti-conformers, which have Boltzmann populations of, respectively, 87 and 13% at 298 K. For both conformers, the calculated ground-state reaction energy profiles associated with cyclization to form fluorodioxirane is lower than the equivalent unimolecular decay path in the simplest CI, H2COO, with anti-HFCOO returning a barrier height more than half of that of H2COO. The excited-state dynamics reveal that photoexcitation to the bright S2 state of syn-HFCOO and anti-HFCOO is expected to undergo a prompt O-O fission─with the former conformer expected to dissociate with an almost unity quantum yield and to form both O (1D) + HFCO (S0) and O (3P) + HFCO (T1) products. In contrast, photoexcitation of anti-HFCOO is expected to undergo an O-O bond fission with a non-unity quantum yield. The fraction of photoexcited anti-HFCOO that dissociates is predicted to exclusively form O (1D) + HFCO (S0) products, which is in sharp contrast to H2COO. The wider implications of our results are discussed from both physical and atmospheric chemistry perspectives.

3.
J Phys Chem A ; 127(1): 203-215, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574960

RESUMO

The 2-butenal oxide Criegee intermediate [(CH3CH═CH)CHOO], an isomer of the four-carbon unsaturated Criegee intermediates derived from isoprene ozonolysis, is characterized on its first π* ← π electronic transition and by the resultant dissociation dynamics to O (1D) + 2-butenal [(CH3CH═CH)CHO] products. The electronic spectrum of 2-butenal oxide under jet-cooled conditions is observed to be broad and unstructured with peak absorption at 373 nm, spanning to half maxima at 320 and 420 nm, and in good accord with the computed vertical excitation energies and absorption spectra obtained for its lowest energy conformers. The distribution of total kinetic energy released to products is ascertained through velocity map imaging of the O (1D) products. About half of the available energy, deduced from the theoretically computed asymptotic energy, is accommodated as internal excitation of the 2-butenal fragment. A reduced impulsive model is introduced to interpret the photodissociation dynamics, which accounts for the geometric changes between 2-butenal oxide and the 2-butenal fragment, and vibrational activation of associated modes in the 2-butenal product. Application of the reduced impulsive model to the photodissociation of isomeric methyl vinyl ketone oxide reveals greater internal activation of the methyl vinyl ketone product arising from methyl internal rotation and rock, which is distinctly different from the dissociation dynamics of 2-butenal oxide or methacrolein oxide.


Assuntos
Óxidos , Análise Espectral
4.
Phys Chem Chem Phys ; 24(27): 16724-16731, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35770704

RESUMO

Criegee intermediates are amongst the most fascinating molecules in modern-day chemistry. They are highly reactive intermediates that find vital roles that range from atmospheric chemistry to organic synthesis. Their excited state chemistry is exotic and complicated, and a myriad of electronic states can contribute to their photodissociation dynamics. This article reports a multi-state direct dynamics (full-dimensional) study of the photoinduced fragmentation of the simplest Criegee intermediate, CH2OO, using state-of-the-art MS-CASPT2 trajectory surface hopping. Following vertical excitation to the strongly absorbing S2(1ππ*) state, internal conversion, and thus changes in the electronic state character of the separating O + CH2O fragments, is observed between parent electronic states at separations that, traditionally, might be viewed as the classically asymptotic region of the potential energy surface. We suggest that such long-range internal conversion may account for the unusual and non-intuitive total kinetic energy distribution in the O(1D) + CH2O(S0) products observed following photoexcitation of CH2OO. The present results also reveal the interplay between seven singlet electronic states and dissociation to yield the experimentally observed O(1D) + CH2O(S0) and O(3P) + CH2O(T1) products. The former (singlet) products are favored, with a branching ratio of ca. 80%, quantifying the hitherto unknown product branching ratios observed in velocity map imaging experiments. To the best of our knowledge, such long-range internal conversions that lead to changes in the electronic state character of the fragment pairs originating from a common parent - at classically asymptotic separations - have not been recognized hitherto in the case of a molecular photodissociation.

5.
J Phys Chem A ; 126(36): 6236-6243, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067494

RESUMO

Ab initio molecular dynamics studies of CH2OO molecules following excitation to the minimum-energy geometry of the strongly absorbing S2 (1ππ*) state reveal a much richer range of behaviors than just the prompt O-O bond fission, with unity quantum yield and retention of overall planarity, identified in previous vertical excitation studies from the ground (S0) state. Trajectories propagated for 100 fs from the minimum-energy region of the S2 state show a high surface hopping (nonadiabatic coupling) probability between the near-degenerate S2 and S1 (1nπ*) states at geometries close to the S2 minimum, which enables population transfer to the optically dark S1 state. Greater than 80% of the excited population undergoes O-O bond fission on the S2 or S1 potential energy surfaces (PESs) within the analysis period, mostly from nonplanar geometries wherein the CH2 moiety is twisted relative to the COO plane. Trajectory analysis also reveals recurrences in the O-O stretch coordinate, consistent with the resonance structure observed at the red end of the parent S2-S0 absorption spectrum, and a small propensity for out-of-plane motion after nonadiabatic coupling to the S1 PES that enables access to a conical intersection between the S1 and S0 states and cyclization to dioxirane products.

6.
J Phys Chem A ; 126(4): 485-496, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35049299

RESUMO

Criegee intermediates are important atmospheric oxidants, formed via the reaction of ozone with volatile alkenes emitted into the troposphere. Small Criegee intermediates (e.g., CH2OO and CH3CHOO) are highly reactive, and their removal via unimolecular decay or bimolecular chemistry dominates their atmospheric lifetimes. As the molecular complexity of Criegee intermediates increases, their electronic absorption spectra show a bathochromic shift within the solar spectrum relevant to the troposphere. In these cases, solar photolysis may become a competitive contributor to their atmospheric removal. In this article, we report the conformer-dependent simulated electronic absorption spectra of two four-carbon-centered Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). Both MVK-oxide and MACR-oxide contain four low-energy conformers, which are convoluted in the experimentally measured spectra. Here, we deconvolute each conformer and estimate contributions from each of the four conformers to the experimentally measured spectra. We also estimate the photolysis rates and predict that solar photolysis should be a more competitive removal process for MVK-oxide and MACR-oxide (cf. CH2OO and CH3CHOO).


Assuntos
Eletrônica , Óxidos , Acroleína/análogos & derivados , Butanonas , Fotólise
7.
Phys Chem Chem Phys ; 24(1): 532-540, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34904596

RESUMO

Criegee intermediates are of great significance to Earth's troposphere - implicated in altering the tropospheric oxidation cycle and in forming low volatility products that typically condense to form secondary organic aerosols (SOAs). As such, their chemistry has attracted vast attention in recent years. In particular, the unimolecular decay of thermal and vibrationally-excited Criegee intermediates has been the focus of several experimental and computational studies, and it is now recognized that Criegee intermediates undergo unimolecular decay to form OH radicals. In this contribution we reveal insight into the chemistry of Criegee intermediates by highlighting the hitherto neglected multi-state contribution to the ground state unimolecular decay dynamics of the Criegee intermediate products. The two key intermediates of present focus are dioxirane and vinylhydroperoxide - known to be active intermediates that mediate the unimolecular decay of CH2OO and CH3CHOO, respectively. In both cases the unimolecular decay path encounters conical intersections, which may play a pivotal role in the ensuing dynamics. This hitherto unrecognized phenomenon may be vital in the way in which the reactivity of Criegee intermediates are modelled and is likely to affect the ensuing dynamics associated with the unimolecular decay of a given Criegee intermediate.

8.
J Phys Chem A ; 125(19): 4089-4097, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33970629

RESUMO

Criegee intermediates (CIs) play a vital role in the atmosphere-known most prominently for enhancing the oxidizing capacity of the troposphere. Knowledge of their electronic absorption spectra is of vital importance for two reasons: (1) to aid experimentalists in detecting CIs and (2) in deciding if their removal is affected by solar photolysis. In this article we report a simple and efficient method based on the nuclear ensemble method that may be effectively used to compute the electronic absorption spectra of Criegee intermediates without the need for extensive computation of preparing the initial configurations of the starting geometry. We use this method to benchmark several excited-state electronic structure methods and their efficacy in reproducing the electronic absorption spectra of two well-known cases of CI: CH2OO and CH3CHOO. The success and computational feasibility of the methodology are crucial for its applicability to CIs of increasing molecular complexity, which have no known experimentally measured electronic absorption spectra, allowing a guide for experimentalists. Application of the methodology to more complex CIs (e.g., those with extended conjugation or those derived from endocyclic alkenes) will also reveal if solar photolysis becomes a competitive removal process when compared to unimolecular decay or bimolecular chemistry.

9.
J Phys Chem A ; 125(30): 6571-6579, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34314179

RESUMO

UV excitation of the CH2OO Criegee intermediate across most of the broad span of the (B 1A')-(X 1A') spectrum results in prompt dissociation to two energetically accessible asymptotes: O (1D) + H2CO (X 1A1) and O (3P) + H2CO (a 3A''). Dissociation proceeds on multiple singlet potential energy surfaces that are coupled by two regions of conical intersection (CoIn). Velocity map imaging (VMI) studies reveal a bimodal total kinetic energy release (TKER) distribution for the O (1D) + H2CO (X 1A1) products with the major and minor components accounting for ca. 40% and ca. 20% on average of the available energy (Eavl), respectively. The unexpected low TKER component corresponds to highly internally excited H2CO (X 1A1) products accommodating ca. 80% of Eavl. Full dimensional trajectory calculations suggest that the bimodal TKER distribution of the O (1D) + H2CO (X 1A1) products originates from two different dynamical pathways: a primary pathway (69%) evolving through one CoIn region to products and a smaller component (20%) sampling both CoIn regions enroute to products. Those that access both CoIn regions likely give rise to the more highly internally excited H2CO (X 1A1) products. The remaining trajectories (11%) dissociate to O (3P) + H2CO (a 3A'') products after traversing through both CoIn regions. The complementary experimental and theoretical investigation provides insight on the photodissociation of CH2OO via multiple dissociation pathways through two regions of CoIn that control the branching and energy distributions of products.

10.
J Chem Phys ; 155(17): 174305, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742186

RESUMO

The electronic spectrum of methyl vinyl ketone oxide (MVK-oxide), a four-carbon Criegee intermediate derived from isoprene ozonolysis, is examined on its second π* ← π transition, involving primarily the vinyl group, at UV wavelengths (λ) below 300 nm. A broad and unstructured spectrum is obtained by a UV-induced ground state depletion method with photoionization detection on the parent mass (m/z 86). Electronic excitation of MVK-oxide results in dissociation to O (1D) products that are characterized using velocity map imaging. Electronic excitation of MVK-oxide on the first π* ← π transition associated primarily with the carbonyl oxide group at λ > 300 nm results in a prompt dissociation and yields broad total kinetic energy release (TKER) and anisotropic angular distributions for the O (1D) + methyl vinyl ketone products. By contrast, electronic excitation at λ ≤ 300 nm results in bimodal TKER and angular distributions, indicating two distinct dissociation pathways to O (1D) products. One pathway is analogous to that at λ > 300 nm, while the second pathway results in very low TKER and isotropic angular distributions indicative of internal conversion to the ground electronic state and statistical unimolecular dissociation.

11.
J Phys Chem A ; 124(3): 498-504, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877042

RESUMO

Singlet oxygen (1O2) is a significant source of biodamage in living organisms. 1O2 is a highly reactive excited electronic-state spin-configuration of molecular oxygen and is usually prepared via organic molecule sensitization. Despite the wealth of experimental studies on the 1O2-induced oxidation of several bio-organic molecules, the detailed mechanism of the oxidation process is largely unknown. Using high-level quantum chemical methods, we compute the potential energy profiles of the various electronic states associated with the [4 + 2]-cycloaddition reaction of O2 with a class of model peptide precursors that are based on derivatives of oxazole and thiazole. Experiments have shown that such oxazole/thiazole-based model peptides show a favorable reaction with 1O2. Upon increasing the molecular complexity, the bimolecular rate constant decreases and is attributed to the π-perturbing effects of the substituent of the oxazole/thiazole moiety. Our theoretical predictions are in excellent agreement with the experimental measurements and reveal a deep insight into the myriad electronic states that may hinder/promote the reaction of a given bio-organic molecule with 1O2.

12.
J Phys Chem A ; 124(13): 2530-2536, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32149509

RESUMO

Treatment of homo- and heterocyclic aromatic substrates with basic deuterium oxide under near- or supercritical conditions results in rapid base-catalyzed hydrogen-deuterium exchange (HDE) in aromatic and benzylic positions. It has been postulated that HDE follows a simple deprotonation-reprotonation mechanism, but little evidence has been provided to date. This study correlates experimentally observed proton exchanges in n-butylbenzene with ab initio calculations of the acidities and potential energy (PE) profiles. In addition to providing further support for carbanion intermediacy in HDE, these results offer new insights into substrate acidities in near- and supercritical aqueous media and the optimal conditions required for their isotope exchange.

13.
Phys Chem Chem Phys ; 21(26): 14418-14428, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30888353

RESUMO

Norrish reactions are important photo-induced reactions in mainstream organic chemistry and are implicated in many industrially and biologically relevant processes and in the processing of carbonyl molecules in the atmosphere. The present study reports multi-reference electronic structure calculations designed to assess details of the potential energy profiles associated with the Norrish type-I and type-II reactions of a prototypical ketone 5-methyl-hexan-2-one. We show that the well-established 'triplet state mediated' reaction pathways following initial population of a singlet excited state can be complemented by (hitherto rarely recognized) 'singlet state only' Norrish type-I and type-II reaction mechanisms that involve no spin-forbidden transitions along the respective reaction paths, and suggest how the efficiencies of such reactions might be affected by strategic substitutions at selected sites within the parent ketone.

14.
Phys Chem Chem Phys ; 21(26): 13880-13901, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30672928

RESUMO

Recent experimental and computational advances have heralded huge progress in the range and the detail of the database pertaining to photoinduced C-H bond fission processes. This Perspective provides a snapshot of the current state of knowledge as determined via gas phase (i.e. isolated molecule) studies of the primary photochemistry of families of hydrocarbon molecules (alkynes, alkenes, alkanes, aromatics and selected heteroatom containing analogues) and the corresponding radicals (including saturated and unsaturated hydrocarbon radicals). Different families show different and, in many cases, understandable propensities for dissociating from an excited electronic state or following non-adiabatic coupling (i.e. internal conversion) to high vibrational levels of the ground electronic state. The Perspective seeks to emphasise the potentially vast range of behaviours (dissociation timescales, product energy disposals, etc.) that can be expected to accompany internal conversion, reflecting the extent to which the tuning coordinate (i.e. the nuclear motions that tune the energy separation between the excited and ground state) projects onto the dissociation coordinate of interest (i.e. the breaking of the C-H bond).

15.
Phys Chem Chem Phys ; 21(26): 14238-14249, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543228

RESUMO

The mechanisms of photoinduced reactions of adenine with water molecules in hydrogen-bonded adenine-water complexes were investigated with ab initio wave-function-based electronic-structure calculations. Two excited-state electron/proton transfer reaction mechanisms have been characterized: H-atom abstraction from water by photoexcited adenine as well as H-atom transfer from photoexcited adenine or the (adenine+H) radical to water. In the water-to-adenine H-atom transfer reaction, an electron from one of the p orbitals of the water molecule fills the hole in the n (π) orbital of the nπ* (ππ*) excited state of adenine, resulting in a charge-separated electronic state. The electronic charge separation is neutralized by the transfer of a proton from the water molecule to adenine, resulting in the (adenine+H)OH biradical in the electronic ground state. In the adenine-to-water H-atom transfer reaction, πσ* states localized at the acidic sites of adenine provide the mechanism for the photoejection of an electron from adenine, which is followed by proton transfer to the hydrogen-bonded water molecule, resulting in the (adenine-H)H3O biradical. The energy profiles of the photoreactions have been computed as relaxed scans with the ADC(2) electronic-structure method. These reactions, which involve the reactivity of adenine with hydrogen-bonded water molecules, compete with the well-established intrinsic excited-state deactivation mechanisms of adenine via ring-puckering or ring-opening conical intersections. By providing additional decay channels, the electron/proton exchange reactions with water can account for the observed significantly shortened excited-state lifetime of adenine in aqueous environments. These findings indicate that adenine possibly was not only a photostabilizer at the beginning of life, but also a primordial photocatalyst for water splitting.

16.
J Chem Phys ; 151(24): 244104, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893877

RESUMO

We present a benchmarking study on the performance of two methods at the forefront of studying electronic metastable states of molecules: the orbital stabilization method and the method of complex absorbing potential augmented Hamiltonians. The performance of the two methods is compared for the calculation of shape resonances in small to medium-sized molecules (up to 15 atoms) at the equation of motion coupled cluster with singles and doubles for the electron attachment level of methodology using even-tempered Gaussian basis sets. The theoretical positions and widths of shape resonances obtained from both methods are compared to the experimentally determined electron affinities and lifetimes. The challenges that accompany the theoretical estimation of resonance positions and widths for medium to large-sized systems with an increase in basis set size are also discussed.

17.
Faraday Discuss ; 207(0): 329-350, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29364301

RESUMO

DNA/RNA photohydrates represent a class of well-known biomolecular lesions formed by the absorption of near- to mid-UV light. They are formed via a photoinduced nucleophilic hydrolysis reaction in which water is split (via nucleobase sensitisation) into H + OH radicals. These nascent radicals can then add across C5[double bond, length as m-dash]C6, saturating the preexisting double bond. If unrepaired, such lesions can lead to mutagenic carcinogenesis, which is responsible for several forms of cancer. Using high-level electronic structure theory (CASPT2), we map the key excited-state reaction paths associated with the reactivity of DNA (guanine and thymine) and RNA (uracil) nucleobases with water. At the outset, we consider the intrinsic reactivity in the isolated gas phase - in which the water (cluster) + chromophore complex is free from environmental perturbations. We then extrapolate the thymine nucleobase to the bulk DNA environment in aqueous solution in order to ascertain the relative importance of hydrate formation in a more complex biological environment. In this latter study we use high-level mixed quantum/classical (QM/MM: CASPT2/AMBER) methods.


Assuntos
DNA/química , RNA/química , Gases/química , Estrutura Molecular , Processos Fotoquímicos , Teoria Quântica , Soluções , Raios Ultravioleta
18.
Phys Chem Chem Phys ; 20(18): 12599-12607, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29693087

RESUMO

The elementary synthesis of prebiotic molecules has attracted vast attention in recent years. Due to their rich surface chemistry and lack of suitable atmosphere, comets represent an important host for such synthesis, especially since they are routinely irradiated with short wavelength electromagnetic radiation and energetic cosmological electrons. Using high-level electronic structure theory, we present the details of the reactivity associated with the electron-impact induced prebiotic synthesis of ethylene glycol (a carbohydrate building block) from elementary methanol. The results suggest that the experimentally observed intermediates and fragment products can be viably formed by both neutral excited-state chemistry and by dissociative electron attachment - highlighting the importance of a theoretical mapping of the relevant potential energy surfaces that ultimately act as an important guide to the experimental results.

19.
J Phys Chem A ; 122(8): 1986-1993, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29392956

RESUMO

4-Hydroxybenzothiazole (4-HBT) is a molecular constituent of pheomelanin-a polymeric skin centered pigment which acts as a natural photoprotector against harmful solar-UV radiation. Its molecular structure is therefore required to sustain a degree of photostability upon electronic excitation with UV irradiation. Despite its function as a protector against UV, pheomelanin is known to be less photostable than that of its close derivative eumelanin-a dark skin centered pigment. The 4-HBT subunit has long being attributed as a key contributor to the lack of photostability of pheomelanin-a hypothesis which we aim to test in this paper. Using high-level multireference computational methods, coupled with on-the-fly surface-hopping molecular dynamics, we find excited state reaction paths that show potential detriment to 4-HBT, leading to phototoxic radicals and products that are distinct from the original ground state molecule. Such radicals and photoproducts include those formed by classic πσ* photodissociations, intramolecular proton-transfer, and ring-opening reactions. Such reactions shed light on the types of molecular structure that show photodetrimental effects upon UV irradiation, allowing judicious predictions for synthetic analogues that may offer enhanced photoprotection in commercial sunscreens.

20.
J Phys Chem A ; 122(51): 9869-9878, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30500203

RESUMO

The ultraviolet (UV) photodissociation of gas-phase methimazole has been investigated by H Rydberg atom photofragment translational spectroscopy methods at many wavelengths in the range of 222.5-275 nm and by complementary electronic structure calculations. Methimazole is shown to exist predominantly as the thione tautomer, 1-methyl-2(3 H)-imidazolinethione, rather than the commonly given thiol form, 2-mercapto-1-methylimidazole. The UV absorption spectrum of methimazole is dominated by the S4 ← S0 transition of the thione tautomer, which involves electron promotion from an a' (p y) orbital localized on the sulfur atom to a σ* orbital localized around the N-H bond. Two H atom formation pathways are identified following UV photoexcitation. One, involving prompt, excited-state N-H bond fission, yields vibrationally cold but rotationally excited methimazolyl (Myl) radicals in their first excited (Ã) electronic state. The second yields H atoms with an isotropic recoil velocity distribution peaking at low kinetic energies but extending to the energetic limit allowed by energy conservation given a ground-state dissociation energy D0(Myl-H) ∼24 000 cm-1. These latter H atoms are attributed to the unimolecular decay of highly vibrationally excited S0 parent molecules. The companion electronic structure calculations provide rationales for both fragmentation pathways and the accompanying product energy disposals and highlight similarities and differences between the UV photochemistry of methimazole and that of other azoles (e.g., imidazole) and with molecules like thiourea and thiouracil that contain similar N-C═S motifs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA