Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Luminescence ; 38(5): 625-636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929164

RESUMO

The present investigation deals with the effect of calcination temperature on the structural and thermoluminescent (TL) properties of Zn2 SiO4 materials. For this study, Zn2 SiO4 was prepared via a simple hydrothermal route and calcinated at temperatures from 700°C to 1100°C in an air atmosphere. TL data of all Zn2 SiO4 samples showed two peaks at around 240°C and 330°C due to the formation of the luminescence centre during X-ray irradiation. More interestingly, the Zn2 SiO4 sample calcinated at 900°C exhibited a shift in the TL peak (282°C and 354°C) with an optimal TL intensity attributed to its good crystallinity with a well-defined hexagonal plate-like morphology. X-ray-irradiated Zn2 SiO4 samples calcinated at 900°C exhibited a high-temperature TL glow curve peak, suggesting that the present material could be used for high-temperature dosimetry applications.


Assuntos
Luminescência , Zinco , Temperatura , Raios X , Dosimetria Termoluminescente , Difração de Raios X
2.
Sci Adv ; 10(6): eadk6856, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335291

RESUMO

Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.

3.
Adv Mater ; 31(34): e1803432, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30773698

RESUMO

Surface-enhanced Raman spectroscopy is a powerful and sensitive analytical tool that has found application in chemical and biomolecule analysis and environmental monitoring. Since its discovery in the early 1970s, a variety of materials ranging from noble metals to nanostructured materials have been employed as surface enhanced Raman scattering (SERS) substrates. In recent years, 2D inorganic materials have found wide use in the development of SERS-based chemical sensors owing to their unique thickness dependent physico-chemical properties with enhanced chemical-based charge-transfer processes. Here, recent advances in the application of various 2D inorganic nanomaterials, including graphene, boron nitride, semiconducting metal oxides, and transition metal chalcogenides, in chemical detection via SERS are presented. The background of the SERS concept, including its basic theory and sensing mechanism, along with the salient features of different nanomaterials used as substrates in SERS, extending from monometallic nanoparticles to nanometal oxides, is comprehensively discussed. The importance of 2D inorganic nanomaterials in SERS enhancement, along with their application toward chemical detection, is explained in detail with suitable examples and illustrations. In conclusion, some guidelines are presented for the development of this promising field in the future.

4.
ACS Appl Mater Interfaces ; 8(50): 34455-34463, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998151

RESUMO

Gel electrolytes are considered to be promising candidates for the use in supercapacitors. It is worthy to systematically evaluate the internal electrochemical mechanisms with a variety of cations (poly(vinyl alcohol) (PVA)-based Li+, Na+, and K+) toward redox-type electrode. Herein, we describe a quasi-solid-state PVA-KCl gel electrolyte for V2O5·0.5H2O-based redox-type capacitors, effectively avoiding electrochemical oxidation and structural breakdown of layered V2O5·0.5H2O during 10 000 charge-discharge cycles (98% capacitance retention at 400 mV s-1). With the gel electrolyte, symmetric V2O5·0.5H2O-reduced graphene oxide (V2O5·0.5H2O-rGO) devices exhibited a volumetric capacitance of 136 mF cm-3, which was much higher than that of 68 mF cm-3 for PVA-NaCl and 45 mF cm-3 for PVA-LiCl. Additionally, hybrid full cells of activated carbon cloth//V2O5·0.5H2O-rGO delivered an energy density of 102 µWh cm-3 and a power density of 73.38 mW cm-3 over a wide potential window of 2 V. The present study provides direct experimental evidence for the contribution of PVA-KCl gel electrolytes toward quick redox reactions for redox-type capacitors, which is also helpful for the development of neutral pH gel electrolytes for energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA