RESUMO
Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1(-/-);Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transativadores/fisiologia , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Proteínas de Fluorescência Verde/biossíntese , Células Hep G2 , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fagossomos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Transativadores/químicaRESUMO
SLC6A14, also known as ATB(0,+), is an amino acid transporter with unique characteristics. It transports 18 of the 20 proteinogenic amino acids. However, this transporter is expressed only at low levels in normal tissues. Here, we show that the transporter is up-regulated specifically in estrogen receptor (ER)-positive breast cancer, demonstrable with primary human breast cancer tissues and human breast cancer cell lines. SLC6A14 is an estrogen/ER target. The transport features of SLC6A14 include concentrative transport of leucine (an activator of mTOR), glutamine (an essential amino acid for nucleotide biosynthesis and substrate for glutaminolysis), and arginine (an essential amino acid for tumor cells), suggesting that ER-positive breast cancer cells up-regulate SLC6A14 to meet their increased demand for these amino acids. Consequently, treatment of ER-positive breast cancer cells in vitro with α-methyl-DL-tryptophan (α-MT), a selective blocker of SLC6A14, induces amino acid deprivation, inhibits mTOR, and activates autophagy. Prolongation of the treatment with α-MT causes apoptosis. Addition of an autophagy inhibitor (3-methyladenine) during α-MT treatment also induces apoptosis. These effects of α-MT are specific to ER-positive breast cancer cells, which express the transporter. The ability of α-MT to cause amino acid deprivation is significantly attenuated in MCF-7 cells, an ER-positive breast cancer cell line, when SLC6A14 is silenced with shRNA. In mouse xenograft studies, α-MT by itself is able to reduce the growth of the ER-positive ZR-75-1 breast cancer cells. These studies identify SLC6A14 as a novel and effective drug target for the treatment of ER-positive breast cancer.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Receptores de Estrogênio , Transplante Heterólogo , Triptofano/análogos & derivados , Triptofano/farmacologia , Células Tumorais CultivadasRESUMO
PURPOSE: To investigate whether conjunctival epithelial cells express transport processes for opioid peptides. METHODS: We monitored the uptake of [(3)H]deltorphin II and [(3)H]DADLE, two hydrolysis-resistant synthetic opioid peptides, in the rabbit conjunctival epithelial cell line CJVE and elucidated the characteristics of the uptake process. RESULTS: CJVE cells express robust uptake activity for deltorphin II and DADLE. Both opioid peptides compete with each other for transport. Several endogenous and synthetic opioid peptides, but not non-peptide opioid antagonists, are recognized by the transport process. Though various peptides inhibit the uptake of deltorphin II and DADLE in a similar manner, the uptake of deltorphin II is partly Na(+)-dependent whereas that of DADLE mostly Na(+)-independent. The transport process shows high affinity for many endogenous/synthetic opioid peptides. Functional features reveal that this transport process may be distinct from the opioid peptide transport system described in the retinal pigment epithelial cell line ARPE-19 and also from the organic anion transporting polypeptides, which are known to transport opioid peptides. CONCLUSIONS: CJVE cells express a novel, hitherto unknown transport process for endogenous/synthetic opioid peptides. This new transport process may offer an effective delivery route for opioid peptide drugs to the posterior segment of the eye.
Assuntos
Transporte Biológico/efeitos dos fármacos , Túnica Conjuntiva/citologia , Células Epiteliais/metabolismo , Peptídeos Opioides/farmacocinética , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Linhagem Celular , Leucina Encefalina-2-Alanina/farmacocinética , Naloxona/farmacologia , Oligopeptídeos/farmacocinética , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Coelhos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidoresRESUMO
ATB(0,+) [SLC6A14 (solute carrier family 6 member 14)] is an Na(+)/Cl(-)-coupled amino acid transporter whose expression is upregulated in cancer. 1-Methyltryptophan is an inducer of immune surveillance against tumour cells through its ability to inhibit indoleamine dioxygenase. In the present study, we investigated the role of ATB(0,+) in the uptake of 1-methyltryptophan as a potential mechanism for entry of this putative anticancer drug into tumour cells. These studies show that 1-methyltryptophan is a transportable substrate for ATB(0,+). The transport process is Na(+)/Cl(-)-dependent with an Na(+)/Cl(-)/1-methyltryptophan stoichiometry of 2:1:1. Evaluation of other derivatives of tryptophan has led to identification of alpha-methyltryptophan as a blocker, not a transportable substrate, for ATB(0,+). ATB(0,+) can transport 18 of the 20 proteinogenic amino acids. alpha-Methyltryptophan blocks the transport function of ATB(0,+) with an IC(50) value of approximately 250 muM under conditions simulating normal plasma concentrations of all these 18 amino acids. These results suggest that alpha-methyltryptophan may induce amino acid deprivation in cells which depend on the transporter for their amino acid nutrition. Screening of several mammary epithelial cell lines shows that ATB(0,+) is expressed robustly in some cancer cell lines, but not in all; in contrast, non-malignant cell lines do not express the transporter. Treatment of ATB(0,+)-positive tumour cells with alpha-methyltryptophan leads to suppression of their colony-forming ability, whereas ATB(0,+)-negative cell lines are not affected. The blockade of ATB(0,+) in these cells with alpha-methyltryptophan is associated with cell cycle arrest. These studies reveal the potential of ATB(0,+) as a drug target for cancer chemotherapy.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Antineoplásicos/farmacologia , Triptofano/análogos & derivados , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Antineoplásicos/uso terapêutico , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Oócitos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia , Xenopus laevisRESUMO
BACKGROUND: 3-bromopyruvate is an alkylating agent with antitumor activity. It is currently believed that blockade of adenosine triphosphate production from glycolysis and mitochondria is the primary mechanism responsible for this antitumor effect. The current studies uncovered a new and novel mechanism for the antitumor activity of 3-bromopyruvate. METHODS: The transport of 3-bromopyruvate by sodium-coupled monocarboxylate transporter SMCT1 (SLC5A8), a tumor suppressor and a sodium (Na+)-coupled, electrogenic transporter for short-chain monocarboxylates, was studied using a mammalian cell expression and the Xenopus laevis oocyte expression systems. The effect of 3-bromopyruvate on histone deacetylases (HDACs) was monitored using the lysate of the human breast cancer cell line MCF7 and human recombinant HDAC isoforms as the enzyme sources. Cell viability was monitored by fluorescence-activated cell-sorting analysis and colony-formation assay. The acetylation status of histone H4 was evaluated by Western blot analysis. RESULTS: 3-Bromopyruvate is a transportable substrate for SLC5A8, and that transport process is Na+-coupled and electrogenic. MCF7 cells did not express SLC5A8 and were not affected by 3-bromopyruvate. However, when transfected with SLC5A8 or treated with inhibitors of DNA methylation, these cells underwent apoptosis in the presence of 3-bromopyruvate. This cell death was associated with the inhibition of HDAC1/HDAC3. Studies with different isoforms of human recombinant HDACs identified HDAC1 and HDAC3 as the targets for 3-bromopyruvate. CONCLUSIONS: 3-Bromopyruvate was transported into cells actively through the tumor suppressor SLC5A8, and the process was energized by an electrochemical Na+ gradient. Ectopic expression of the transporter in MCF7 cells led to apoptosis, and the mechanism involved the inhibition of HDAC1/HDAC3.