Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 229(3): 450-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27113131

RESUMO

Although the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To maximise energy storage and return, energy-storing tendons need to be more extensible and elastic than tendons with a purely positional function. These properties are conferred in part by a specialisation of a specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy-storing and positional tendons, and that protein distribution varies between the fascicular matrix and the interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution in the energy-storing equine superficial digital flexor tendon and positional common digital extensor tendon was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy-storing superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in this tendon. A differential distribution of proteoglycans was identified between tendon types and regions, which may indicate a distinct role for each of these proteins in tendon. These data provide important advances into fully characterising structure-function relationships within tendon.


Assuntos
Tendões/metabolismo , Animais , Elastina , Glicoproteínas , Cavalos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica
2.
Bone Joint J ; 106-B(3 Supple A): 59-66, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423117

RESUMO

Aims: Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA. Methods: Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators. Results: Following initial exposure, the ischiofemoral ligament (7 to 8 o'clock) was the largest restrictor of exposure of the acetabulum, contributing to a mean 25% of overall external rotational restraint. The ischiofemoral ligament (10 to 12 o'clock) was the largest restrictor of exposure of the proximal femur, contributing to 25% of overall extension restraint. Releasing the short external rotators had minimal contribution in torque generated during joint exposure (≤ 5%). Conclusion: Adequate exposure of both proximal femur and acetabulum may be achieved with minimal torque by performing a full proximal circumferential capsulotomy while preserving short external rotators. The joint torque generated and exposure achieved is dependent on patient factors; therefore, some cases may necessitate further releases.


Assuntos
Artroplastia de Quadril , Humanos , Liberação da Cápsula Articular , Acetábulo , Articulação do Quadril/cirurgia , Fêmur/cirurgia
3.
Bone Joint Res ; 10(9): 594-601, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34555959

RESUMO

AIMS: In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. METHODS: Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule. RESULTS: The medial and lateral arms of the iliofemoral ligament generated the highest inbound force vector in positions combining extension and adduction providing anterior stability. The ischiofemoral ligament generated the highest inbound force in flexion with adduction and internal rotation (FADIR), reducing the risk of posterior dislocation. In this position the hip joint reaction force moved 0.8° inbound per Nm of internal capsular restraint, preventing edge loading. CONCLUSION: The capsular ligaments contribute to keep the joint force vector inbound from the edge of the acetabulum at extreme ROM. Preservation and appropriate tensioning of these structures following any type of hip surgery may be crucial to minimizing complications related to joint instability. Cite this article: Bone Joint Res 2021;10(9):594-601.

4.
PLoS One ; 15(9): e0239363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970710

RESUMO

BACKGROUND: Healthcare workers around the world are experiencing skin injury due to the extended use of personal protective equipment (PPE) during the COVID-19 pandemic. These injuries are the result of high shear stresses acting on the skin, caused by friction with the PPE. This study aims to provide a practical lubricating solution for frontline medical staff working a 4+ hours shift wearing PPE. METHODS: A literature review into skin friction and skin lubrication was conducted to identify products and substances that can reduce friction. We evaluated the lubricating performance of commercially available products in vivo using a custom-built tribometer. FINDINGS: Most lubricants provide a strong initial friction reduction, but only few products provide lubrication that lasts for four hours. The response of skin to friction is a complex interplay between the lubricating properties and durability of the film deposited on the surface and the response of skin to the lubricating substance, which include epidermal absorption, occlusion, and water retention. INTERPRETATION: Talcum powder, a petrolatum-lanolin mixture, and a coconut oil-cocoa butter-beeswax mixture showed excellent long-lasting low friction. Moisturising the skin results in excessive friction, and the use of products that are aimed at 'moisturising without leaving a non-greasy feel' should be prevented. Most investigated dressings also demonstrate excellent performance.


Assuntos
Infecções por Coronavirus/complicações , Lubrificantes/uso terapêutico , Equipamento de Proteção Individual/efeitos adversos , Pneumonia Viral/complicações , Pele/lesões , Adulto , Betacoronavirus , Fenômenos Biomecânicos , COVID-19 , Fricção , Humanos , Masculino , Corpo Clínico , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA