Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rev Med Virol ; 29(6): e2079, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31410931

RESUMO

In the last decade, virus hunting and discovery has gained pace. This achievement has been driven by three major factors: (a) advancements in sequencing technologies, (b) scaled-up routine arbovirus surveillance strategies, and (c) the "hunt" for emerging pathogens and novel viruses. Many novel viruses have been discovered from a myriad of hosts, vectors, and environmental samples. To help promote understanding of the global diversity and distribution of mosquito-associated viruses and facilitate future studies, we review mosquito-associated viruses discovered between years 2007 and 2017, across the world. In the analyzed period, novel mosquito-associated viruses belonging to 25 families and a general group of unclassified viruses were categorized. The top three discovered novel mosquito-associated viruses belonged to families Flaviviridae (n=32), Rhabdoviridae (n=16), and Peribunyaviridae (n=14). Also, 67 unclassified viruses were reported. Majority of these novel viruses were identified from Culex spp, Anopheles spp, Aedes spp, and Mansonia spp mosquitoes, respectively. Notably, the number of these discovered novels is not representative of intercontinental virus diversity but rather is influenced by the number of studies done in the study period. Some of these newly discovered mosquito-associated viruses have medical significance, either directly or indirectly. For instance, in the study period, 14 novel mosquito-borne viruses that infect mammalian cells in vitro were reported. These viruses pose a danger to the global health security on emerging viral diseases. On the other hand, some of the newly discovered insect specific viruses described herein have potential application as future biocontrol and vaccine agents against known pathogenic arboviruses. Overall, this review outlines the crucial role played by mosquitoes as viral vectors in the global virosphere.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Vírus/classificação , Vírus/genética , Animais , Genes Virais , Filogenia , Filogeografia , Vírus/isolamento & purificação
2.
Pathog Glob Health ; 115(1): 21-39, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191867

RESUMO

Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.


Assuntos
Vacinas Virais , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Ensaios Clínicos como Assunto , Reposicionamento de Medicamentos , Humanos , RNA Viral , Vacinas Atenuadas , Zika virus/patogenicidade , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/prevenção & controle
3.
Insects ; 10(9)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500284

RESUMO

Propoxur-sel strains of Culex pipiens quinquefasciatus were derived from a lab-bred strain following 16 generations of propoxur exposure under sublethal concentrations of LC25 (lethal concentration of 25%) and LC50 (lethal concentration of 50%), respectively. This resulted in resistance development in F16 with ratios of 8.8× and 6.3×, respectively, compared with F0. The fecundity, longevity, sex ratio (F/M), and hatchability of the propoxur-exposed Cx. quinquefasciatus adult survivors and their offspring were decreased, with no effect on the emergence ratio and pupa survival rate. In addition, the intrinsic rates of increase (r), the net reproduction (R0), and the finite rate of increase (λ) of the Cx. quinquefasciatus offspring generations were also decreased significantly compared to F0. Correspondingly, the mean generation time (T) and the population double time (DT) in propoxur-sels were increased. Enhanced activities of cytochrome P450 monooxygenase and esterase were also observed in propoxur-sels, indicating that a detoxification mechanism might be responsible for resistance development in Cx. quinquefasciatus. Except for the three genes cyp4d42v1, cyp4c52v1, and cyp6aa9 which displayed a coincidence in some degree in different treatments, induction by different doses of propoxur and constitutive expression in different generations of propoxur-sel strains resulted in an inconsistent identification of the P450 genes probably related with resistance.

4.
Insects ; 10(6)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208124

RESUMO

Kenya is among the most affected tropical countries with pathogen transmitting Culicidae vectors. For decades, insect vectors have contributed to the emergence and distribution of viral and parasitic pathogens. Outbreaks and diseases have a great impact on a country's economy, as resources that would otherwise be used for developmental projects are redirected to curb hospitalization cases and manage outbreaks. Infected invasive mosquito species have been shown to increasingly cross both local and global boarders due to the presence of increased environmental changes, trade, and tourism. In Kenya, there have been several mosquito-borne disease outbreaks such as the recent outbreaks along the coast of Kenya, involving chikungunya and dengue. This certainly calls for the implementation of strategies aimed at strengthening integrated vector management programs. In this review, we look at mosquitoes of public health concern in Kenya, while highlighting the pathogens they have been linked with over the years and across various regions. In addition, the major strategies that have previously been used in mosquito control and what more could be done to reduce or combat the menace caused by these hematophagous vectors are presented.

5.
Viruses ; 10(1)2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329230

RESUMO

Many blood-feeding arthropods are known vectors of viruses that are a source of unprecedented global health concern. Mosquitoes are an integral part of these arthropod vectors. Advancements in next-generation sequencing and bioinformatics has expanded our knowledge on the richness of viruses harbored by arthropods. In the present study, we applied a metagenomic approach to determine the intercontinental virome diversity of Culex quinquefasciatus and Culex tritaeniorhynchus in Kwale, Kenya and provinces of Hubei and Yunnan in China. Our results showed that viromes from the three locations were strikingly diverse and comprised 30 virus families specific to vertebrates, invertebrates, plants, and protozoa as well as unclassified group of viruses. Though sampled at different times, both Kwale and Hubei mosquito viromes were dominated by vertebrate viruses, in contrast to the Yunnan mosquito virome, which was dominated by insect-specific viruses. However, each virome was unique in terms of virus proportions partly influenced by type of ingested meals (blood, nectar, plant sap, environment substrates). The dominant vertebrate virus family in the Kwale virome was Papillomaviridae (57%) while in Hubei it was Herpesviridae (30%) and the Yunnan virome was dominated by an unclassified viruses group (27%). Given that insect-specific viruses occur naturally in their hosts, they should be the basis for defining the viromes. Hence, the dominant insect-specific viruses in Kwale, Hubei, and Yunnan were Baculoviridae, Nimaviridae and Iflaviridae, respectively. Our study is preliminary but contributes to growing and much needed knowledge, as mosquito viromes could be manipulated to prevent and control pathogenic arboviruses.


Assuntos
Culex/virologia , Genoma Viral , Vírus de Insetos/classificação , Metagenômica , Microbiota , Animais , China/epidemiologia , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Quênia/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA