Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 31(8): 3267-3277, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28404744

RESUMO

The endocannabinoid system has previously been shown to play a role in the permeability and inflammatory response of the human gut. The goal of our study was to determine the effects of endogenous anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) on the permeability and inflammatory response of intestinal epithelium under normal, inflammatory, and hypoxic conditions. Human intestinal mucosa was modeled using Caco-2 cells. Human tissue was collected from planned colorectal resections. Accumulation of AEA and 2-AG was achieved by inhibiting their metabolizing enzymes URB597 (a fatty acid amide hydrolase inhibitor) and JZL184 (a monoacylglycerol lipase inhibitor). Inflammation and ischemia were simulated with TNF-α and IFN-γ and oxygen deprivation. Permeability changes were measured by transepithelial electrical resistance. The role of the CB1 receptor was explored using CB1-knockdown (CB1Kd) intestinal epithelial cells. Endocannabinoid levels were measured using liquid chromatography-mass spectrometry. Cytokine secretion was measured using multiplex and ELISA. URB597 and JZL184 caused a concentration-dependent increase in permeability via CB1 (P < 0.0001) and decreased cytokine production. Basolateral application of JZL184 decreased permeability via CB1 (P < 0.0001). URB597 and JZL184 increased the enhanced (worsened) permeability caused by inflammation and hypoxia (P < 0.0001 and P < 0.05). CB1Kd cells showed reduced permeability response to inflammation (P < 0.01) but not hypoxia. 2-AG levels were increased in response to inflammation and hypoxia in Caco-2 cells. In human mucosal tissue, inflammation increased the secretion of granulocyte macrophage-colony stimulating factor, IL-12, -13, and -15, which was prevented with ex vivo treatment with URB597 and JZL184, and was inhibited by a CB1 antagonist. The results of this study show that endogenous AEA and 2-AG production and CB1 activation play a key modulatory roles in normal intestinal mucosa permeability and in inflammatory and hypoxic conditions.-Karwad, M. A., Couch, D. G., Theophilidou, E., Sarmad, S., Barrett, D. A., Larvin, M., Wright, K. L., Lund, J. N., O'Sullivan, S. E. The role of CB1 in intestinal permeability and inflammation.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Intestinos/fisiologia , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Células CACO-2 , Carbamatos/farmacologia , Neoplasias Colorretais/metabolismo , Citocinas/genética , Citocinas/metabolismo , Impedância Elétrica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Consumo de Oxigênio , Permeabilidade , Piperidinas/farmacologia , Receptor CB1 de Canabinoide/genética , Técnicas de Cultura de Tecidos
2.
FASEB J ; 31(2): 469-481, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27623929

RESUMO

Cannabinoids modulate intestinal permeability through cannabinoid receptor 1 (CB1). The endocannabinoid-like compounds oleoylethanolamine (OEA) and palmitoylethanolamine (PEA) play an important role in digestive regulation, and we hypothesized they would also modulate intestinal permeability. Transepithelial electrical resistance (TEER) was measured in human Caco-2 cells to assess permeability after application of OEA and PEA and relevant antagonists. Cells treated with OEA and PEA were stained for cytoskeletal F-actin changes and lysed for immunoassay. OEA and PEA were measured by liquid chromatography-tandem mass spectrometry. OEA (applied apically, logEC50 -5.4) and PEA (basolaterally, logEC50 -4.9; apically logEC50 -5.3) increased Caco-2 resistance by 20-30% via transient receptor potential vanilloid (TRPV)-1 and peroxisome proliferator-activated receptor (PPAR)-α. Preventing their degradation (by inhibiting fatty acid amide hydrolase) enhanced the effects of OEA and PEA. OEA and PEA induced cytoskeletal changes and activated focal adhesion kinase and ERKs 1/2, and decreased Src kinases and aquaporins 3 and 4. In Caco-2 cells treated with IFNγ and TNFα, OEA (via TRPV1) and PEA (via PPARα) prevented or reversed the cytokine-induced increased permeability compared to vehicle (0.1% ethanol). PEA (basolateral) also reversed increased permeability when added 48 or 72 h after cytokines (P < 0.001, via PPARα). Cellular and secreted levels of OEA and PEA (P < 0.001-0.001) were increased in response to inflammatory mediators. OEA and PEA have endogenous roles and potential therapeutic applications in conditions of intestinal hyperpermeability and inflammation.-Karwad, M. A., Macpherson, T., Wang, B., Theophilidou, E., Sarmad, S., Barrett, D. A., Larvin, M., Wright, K. L., Lund, J. N., O'Sullivan, S. E. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα.


Assuntos
Etanolaminas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Oleicos/farmacologia , PPAR alfa/metabolismo , Ácidos Palmíticos/farmacologia , Canais de Cátion TRPV/metabolismo , Amidas , Células CACO-2 , Citocinas , Citoesqueleto , Humanos , Intestinos/efeitos dos fármacos , PPAR alfa/genética , Permeabilidade/efeitos dos fármacos , Transdução de Sinais , Canais de Cátion TRPV/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA