Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; : 107569, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009342

RESUMO

Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell (iPSC) line, and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic wildtype controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate (OCR) was increased. OCR in response to physiological levels of lactate was significantly greater in wildtype compared to PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.

2.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
PLoS Negl Trop Dis ; 13(9): e0007703, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31483794

RESUMO

Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedes spp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV lifecycle is poorly understood and specific antiviral therapeutics or vaccines are lacking. In this study, we investigated the role of host-cell chloride (Cl-) channels on CHIKV replication.We demonstrate that specific pharmacological Cl- channel inhibitors significantly inhibit CHIKV replication in a dose-dependent manner, suggesting that Cl-channels are pro-viral factors in human cells. Further analysis of the effect of the inhibitors on CHIKV attachment, entry, viral protein expression and replicon replication demonstrated that Cl- channels are specifically required for efficient CHIKV genome replication. This was conserved in mosquito cells, where CHIKV replication and genome copy number was significantly reduced following Cl- channel inhibition. siRNA silencing identified chloride intracellular channels 1 and 4 (CLIC1 and CLIC4, respectively) as required for efficient CHIKV replication and protein affinity chromatography showed low levels of CLIC1 in complex with CHIKV nsP3, an essential component of the viral replication machinery. In summary, for the first time we demonstrate that efficient replication of the CHIKV genome depends on cellular Cl- channels, in both human and mosquito cells and identifies CLIC1 and CLIC4 as agonists of CHIKV replication in human cells. We observe a modest interaction, either direct or indirect, between CLIC1 and nsP3 and hypothesize that CLIC1 may play a role in the formation/maintenance of CHIKV replication complexes. These findings advance our molecular understanding of CHIKV replication and identify potential druggable targets for the treatment and prevention of CHIKV mediated disease.


Assuntos
Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Canais de Cloreto/metabolismo , Genoma Viral , Replicação Viral , Aedes/genética , Aedes/metabolismo , Aedes/virologia , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Canais de Cloreto/genética , Interações Hospedeiro-Parasita , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA