Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(7): 4141-4147, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29916248

RESUMO

In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states and achieve robust current quantization up to a few gigahertz. We show that the fidelity of the electron capture depends on the sequence in which the parasitic states become available for loading, resulting in distinctive frequency-dependent features in the pumped current.

2.
Opt Express ; 25(14): 16574-16588, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789160

RESUMO

Synchrotron radiation-based nano-FTIR spectroscopy utilizes the highly brilliant and ultra-broadband infrared (IR) radiation provided by electron storage rings for the infrared spectroscopic characterization of samples at the nanoscale. In order to exploit the full potential of this approach we investigated the influence of the properties of the radiation source, such as the electron bunch shape and spectral bandwidth of the emitted radiation, on near-field infrared spectra of silicon-carbide (SiC). The adapted configuration of the storage ring optics enables a modification of the transverse electron bunch profile allowing an increase of the measured near-field signal amplitude. Additionally, the decay of the signal amplitude due to the decreasing storage ring current is also eliminated. Further options for improving the sensitivity of nano-FTIR spectroscopy, which can also be applied to other broadband radiation sources, are the adaption of the spectral bandwidth to the wavelength range of interest or the use of polarization optics. The sensitivity enhancement emerging from these options is verified by comparing near-field spectra collected from crystalline SiC samples. The improvement in sensitivity by combining these approaches is demonstrated by acquiring nano-FTIR spectra from thin organic films, which show weak resonances in the IR-regime.

3.
Rep Prog Phys ; 78(10): 103901, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26394066

RESUMO

Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property--the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of [Formula: see text] as function of control parameters, where [Formula: see text] is the electron charge and f is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These devices allow modulation of charge exchange rates between the dot and the leads over many orders of magnitude and enable trapping of a precise number of electrons far away from equilibrium with the leads. The corresponding non-adiabatic pumping protocols focus on understanding of separate parts of the pumping cycle associated with charge loading, capture and release. In this report we review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots.

4.
Phys Rev Lett ; 110(12): 126803, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166833

RESUMO

We report noninvasive single-charge detection of the full probability distribution P(n) of the initialization of a quantum dot with n electrons for rapid decoupling from an electron reservoir. We analyze the data in the context of a model for sequential tunneling pinch-off, which has generic solutions corresponding to two opposing mechanisms. One limit considers sequential "freeze-out" of an adiabatically evolving grand canonical distribution, the other one is an athermal limit equivalent to the solution of a generalized decay cascade model. We identify the athermal capturing mechanism in our sample, testifying to the high precision of our combined theoretical and experimental methods. The distinction between the capturing mechanisms allows us to derive efficient experimental strategies for improving the initialization.

5.
Nat Nanotechnol ; 18(7): 733-740, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169898

RESUMO

The nonlinear response of a beam splitter to the coincident arrival of interacting particles enables numerous applications in quantum engineering and metrology. Yet, it poses considerable challenges to control interactions on the individual particle level. Here, we probe the coincidence correlations at a mesoscopic constriction between individual ballistic electrons in a system with unscreened Coulomb interactions and introduce concepts to quantify the associated parametric nonlinearity. The full counting statistics of joint detection allows us to explore the interaction-mediated energy exchange. We observe an increase from 50% up to 70% in coincidence counts between statistically indistinguishable on-demand sources and a correlation signature consistent with the independent tomography of the electron emission. Analytical modelling and numerical simulations underpin the consistency of the experimental results with Coulomb interactions between two electrons counterpropagating in a quadratic saddle potential. Coulomb repulsion energy and beam splitter dispersion define a figure of merit, which in this experiment is demonstrated to be sufficiently large to enable future applications, such as single-shot in-flight detection and quantum logic gates.

6.
Phys Rev Lett ; 109(21): 216801, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23215606

RESUMO

The phase of a single quantum state is undefined unless the history of its creation provides a reference point. Thus, quantum interference may seem hardly relevant for the design of deterministic single-electron sources which strive to isolate individual charge carriers quickly and completely. We provide a counterexample by analyzing the nonadiabatic separation of a localized quantum state from a Fermi sea due to a closing tunnel barrier. We identify the relevant energy scales and suggest ways to separate the contributions of quantum nonadiabatic excitation and back tunneling to the rare noncapture events. In the optimal regime of balanced decay and nonadiabaticity, our simple electron trap turns into a single-lead Landau-Zener back tunneling interferometer, revealing the dynamical phase accumulated between the particle capture and leakage. The predicted "quantum beats in back tunneling" may turn the error of a single-electron source into a valuable signal revealing essentially nonadiabatic energy scales of a dynamic quantum dot.

7.
Nat Commun ; 12(1): 285, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436588

RESUMO

Mesoscopic integrated circuits aim for precise control over elementary quantum systems. However, as fidelities improve, the increasingly rare errors and component crosstalk pose a challenge for validating error models and quantifying accuracy of circuit performance. Here we propose and implement a circuit-level benchmark that models fidelity as a random walk of an error syndrome, detected by an accumulating probe. Additionally, contributions of correlated noise, induced environmentally or by memory, are revealed as limits of achievable fidelity by statistical consistency analysis of the full distribution of error counts. Applying this methodology to a high-fidelity implementation of on-demand transfer of electrons in quantum dots we are able to utilize the high precision of charge counting to robustly estimate the error rate of the full circuit and its variability due to noise in the environment. As the clock frequency of the circuit is increased, the random walk reveals a memory effect. This benchmark contributes towards a rigorous metrology of quantum circuits.

8.
Phys Rev Lett ; 104(18): 186805, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482199

RESUMO

Dynamic quantum dots can be formed by time-dependent electrostatic potentials, such as in gate- or surface-acoustic-wave-driven electron pumps. In this work we propose and quantify a scheme to initialize quantum dots with a controllable number of electrons. It is based on a rapid increase of the electron potential energy and simultaneous decoupling from the source lead. The full probability distribution for the final number of captured electrons is obtained by solving a master equation for stochastic cascade of single electron escape events. We derive an explicit fitting formula to extract the sequence of decay rate ratios from the measurements of averaged current in a periodically driven device. This provides a device-specific fingerprint which allows us to compare different architectures, and predict the upper limits of initialization accuracy from low precision measurements.

9.
Nat Nanotechnol ; 17(3): 225-226, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190723
10.
Nat Nanotechnol ; 10(1): 46-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25437747

RESUMO

The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong-Ou-Mandel experiments. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been successfully partitioned, as verified by measuring the coincidence of arrival. Here, we demonstrate the splitting of electron pairs generated on demand. Coincidence correlation measurements allow the reconstruction of the full counting statistics, revealing regimes of statistically independent, distinguishable or correlated partitioning, and have been envisioned as a source of information on the quantum state of the electron pair. The high pair-splitting fidelity opens a path to future on-demand generation of spin-entangled electron pairs from a suitably prepared two-electron quantum-dot ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA