Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 146(18)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31488566

RESUMO

During development, the p75 neurotrophin receptor (p75NTR) is widely expressed in the nervous system where it regulates neuronal differentiation, migration and axonal outgrowth. p75NTR also mediates the survival and death of newly born neurons, with functional outcomes being dependent on both timing and cellular context. Here, we show that knockout of p75NTR from embryonic day 10 (E10) in neural progenitors using a conditional Nestin-Cre p75NTR floxed mouse causes increased apoptosis of progenitor cells. By E14.5, the number of Tbr2-positive progenitor cells was significantly reduced and the rate of neurogenesis was halved. Furthermore, in adult knockout mice, there were fewer cortical pyramidal neurons, interneurons, cholinergic basal forebrain neurons and striatal neurons, corresponding to a relative reduction in volume of these structures. Thalamic midline fusion during early postnatal development was also impaired in Nestin-Cre p75NTR floxed mice, indicating a novel role for p75NTR in the formation of this structure. The phenotype of this strain demonstrates that p75NTR regulates multiple aspects of brain development, including cortical progenitor cell survival, and that expression during early neurogenesis is required for appropriate formation of telencephalic structures.


Assuntos
Prosencéfalo Basal/embriologia , Neocórtex/embriologia , Neostriado/embriologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Tálamo/embriologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Proliferação de Células , Sobrevivência Celular , Complexo de Golgi/metabolismo , Interneurônios/metabolismo , Camundongos , Nestina/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Tamanho do Órgão , Células Piramidais/metabolismo
2.
Cereb Cortex ; 31(3): 1763-1775, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188399

RESUMO

Genetic association studies have identified many factors associated with neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the way these genes shape neuroanatomical structure and connectivity is poorly understood. Recent research has focused on proteins that act as points of convergence for multiple factors, as these may provide greater insight into understanding the biology of neurodevelopmental disorders. USP9X, a deubiquitylating enzyme that regulates the stability of many ASD-related proteins, is one such point of convergence. Loss of function variants in human USP9X lead to brain malformations, which manifest as a neurodevelopmental syndrome that frequently includes ASD, but the underlying structural and connectomic abnormalities giving rise to patient symptoms is unknown. Here, we analyzed forebrain-specific Usp9x knockout mice (Usp9x-/y) to address this knowledge gap. Usp9x-/y mice displayed abnormal communication and social interaction behaviors. Moreover, the absence of Usp9x culminated in reductions to the size of multiple brain regions. Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Neurogênese/fisiologia , Ubiquitina Tiolesterase/metabolismo , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Knockout
3.
Stem Cells ; 36(11): 1764-1777, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30068016

RESUMO

Identifying the signaling mechanisms that regulate adult neurogenesis is essential to understanding how the brain may respond to neuro-inflammatory events. P2X7 receptors can regulate pro-inflammatory responses, and in addition to their role as cation channels they can trigger cell death and mediate phagocytosis. How P2X7 receptors may regulate adult neurogenesis is currently unclear. Here, neural progenitor cells (NPCs) derived from adult murine hippocampal subgranular (SGZ) and cerebral subventricular (SVZ) zones were utilized to characterize the roles of P2X7 in adult neurogenesis, and assess the effects of high extracellular ATP, characteristic of inflammation, on NPCs. Immunocytochemistry found NPCs in vivo and in vitro expressed P2X7, and the activity of P2X7 in culture was demonstrated using calcium influx and pore formation assays. Live cell and confocal microscopy, in conjunction with flow cytometry, revealed P2X7+ NPCs were able to phagocytose fluorescent beads, and this was inhibited by ATP, indicative of P2X7 involvement. Furthermore, P2X7 receptors were activated with ATP or BzATP, and 5-ethynyl-2'-deoxyuridine (EdU) used to observe a dose-dependent decrease in NPC proliferation. A role for P2X7 in decreased NPC proliferation was confirmed using chemical inhibition and NPCs from P2X7-/- mice. Together, these data present three distinct roles for P2X7 during adult neurogenesis, depending on extracellular ATP concentrations: (a) P2X7 receptors can form transmembrane pores leading to cell death, (b) P2X7 receptors can regulate rates of proliferation, likely via calcium signaling, and (c) P2X7 can function as scavenger receptors in the absence of ATP, allowing NPCs to phagocytose apoptotic NPCs during neurogenesis. Stem Cells 2018;36:1764-1777.


Assuntos
Hipocampo/metabolismo , Inflamação/metabolismo , Células-Tronco Neurais/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Células-Tronco/metabolismo , Animais , Proliferação de Células/fisiologia , Camundongos , Células-Tronco Neurais/citologia , Neurogênese , Fagocitose
4.
Mol Neurobiol ; 57(5): 2179-2193, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31974941

RESUMO

Intellectual disability (ID) and autism spectrum disorder (ASD) are two of the most common neurodevelopmental disorders. Both disorders are extremely heterogenous, and only ~ 40% of reported cases have so far been attributed to genetic mutations. Of the many cellular processes that are affected, the ubiquitin system (UbS) is of particular relevance in that it can rapidly regulate multiple signaling cascades simultaneously. The UbS is a post-translational modification process that revolves around the covalent attachment of a ubiquitin moiety to a substrate, thereby influencing different elements of protein biology, including trafficking, signal transduction, and degradation. Importantly, the UbS has been implicated in regulating multiple pathophysiological pathways related to ASD and ID. This review will discuss how the UbS acts as major signaling hub in the pathogenesis of ASD and ID, raising the prospect of treating broader patient cohorts by targeting the UbS as a common point of convergence of various mutations.


Assuntos
Transtorno do Espectro Autista/metabolismo , Deficiência Intelectual/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/genética , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA