RESUMO
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is an intricate signaling cascade composed of various cytokines, interferons (IFN, growth factors, and other molecules. This pathway provides a delicate mechanism through which extracellular factors adjust gene expression, thereby acting as a substantial basis for environmental signals to influence cell growth and differentiation. The interactions between the JAK/STAT cascade and antiviral IFNs are critical to the host's immune response against viral microorganisms. Recently, with the emergence of therapeutic classes that target JAKs, the significance of this cascade has been recognized in an unprecedented way. Despite the functions of the JAK/STAT pathway in adjusting immune responses against viral pathogens, a vast body of evidence proposes the role of this cascade in the replication and pathogenesis of viral pathogens. In this article, we review the structure of the JAK/STAT signaling cascade and its role in immuno-inflammatory responses. We also highlight the paradoxical effects of this pathway in the pathogenesis of viral infections. Video Abstract.
Assuntos
Janus Quinases , Viroses , Humanos , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Citocinas/metabolismoRESUMO
tRNA-derived fragments (tRFs), non-coding RNAs that regulate protein expression after transcription, have recently been identified as potential biomarkers. We identified differentially expressed tRFs in gastric cancer (GC) and the biological properties of tRFs in predicting the malignancy status of GCs as possible biomarkers. Until 15 February 2022, two independent reviewers did a thorough search in electronic databases of Scopus, EMBASE and PubMed. The QUADAS scale was used for quality assessment of the included studies. Ten articles investigating the clinical significance of tRFs, including 928 patients, were analysed. In 10 GC studies, seven tRFs were considerably upregulated and five tRFs were significantly downregulated when compared to controls. Risk of bias was rated low for index test, and flow as well as timing domains in relation to the review question. The applicability of the index test, flow and timing and patient selection for 10 studies was deemed low. In this study, we review the advances in the study of tRFs in GC and describe their functions in gene expression regulation, such as suppression of translation, cell differentiation, proliferation and the related signal transduction pathways associated with them. Our findings may offer researchers new ideas for cancer treatment as well as potential biomarkers for further research in GC.
Assuntos
Neoplasias Gástricas , Biomarcadores , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , RNA de Transferência/genética , Neoplasias Gástricas/genéticaRESUMO
Gastric ulcers and gastric cancer are brought on by the Helicobacter pylori bacteria, which colonizes under the stomach mucous membrane. Different medication regimens are used to remove it, but the illness returns and becomes more resistant, which lowers the treatment rates. Additionally, this bacterium now exhibits a skyrocketing level of multi-drug resistance, necessitating recurrent therapeutic treatments. The negative effects of synthetic medications in comparison to conventional therapies are another significant factor in favor of non-pharmacological therapy. The most significant side effects of popular anti-gastric ulcer medications include nausea, vomiting, and diarrhea. Stomach ulcers have previously been treated with herbal remedies and complementary treatments like probiotics. When probiotics are ingested, the host experiences several advantages that may be brought about by altering the bacterial flora in the digestive system. Additionally, stronger-acting chemical compounds and plant extracts can be employed to treat patients. In this article, we look at the substances and medications that are utilized in place of synthetic stomach ulcer-curing treatments.
RESUMO
Mesenchymal stromal cells, commonly referred to as MSCs, are a type of multipotent stem cells that are typically extracted from adipose tissue and bone marrow. In the field of tissue engineering and regenerative medicine, MSCs and their exosomes have emerged as revolutionary tools. Researchers are now devoting greater attention to MSCs because of their ability to generate skin cells like fibroblasts and keratinocytes, as well as their distinctive potential to decrease inflammation and emit pro-angiogenic molecules at the site of wounds. More recent investigations revealed that MSCs can exert numerous direct and indirect antimicrobial effects that are immunologically mediated. Collectively, these antimicrobial properties can remove bacterial infections when the MSCs are delivered in a therapeutic setting. Regardless of the positive therapeutic potential of MSCs for a multitude of conditions, transplanted MSC cell retention continues to be a major challenge. Since MSCs are typically administered into naturally hypoxic tissues, understanding the impact of hypoxia on the functioning of MSCs is crucial. Hypoxia has been postulated to be among the factors determining the differentiation of MSCs, resulting in the production of inflammatory cytokines throughout the process of tissue regeneration and wound repair. This has opened new horizons in developing MSC-based systems as a potent therapeutic tool in oxygen-deprived regions, including anaerobic wound infection sites. This review sheds light on the role of hypoxia-MSCs in the treatment of anaerobic bacterial wound infection in terms of both their regenerative and antimicrobial activities.